| 研究生: |
孔德翰 Kung, Te-Han |
|---|---|
| 論文名稱: |
腦神經醫學影像生物特徵鑑定於輕度知能障礙轉變至阿茲海默症之辨識 Neuroimage Biomarker Identification for Mild Cognitive Impairment to Alzheimer Disease Conversion |
| 指導教授: |
李國君
Lee, Gwo-Giun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 輕度知能障礙 、阿茲海默症 、磁振造影 、海馬迴子區 、多層感知器 、三維捲積神經網路 |
| 外文關鍵詞: | Mild Cognitive Impairment, Alzheimer’s disease, Magnetic Resonance Imaging, Hippocampal Subfields, Multilayer Perceptron, 3D Convolutional Neural Network |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在辨識輕度認知障礙與阿茲海默症中,由於面臨缺乏非侵入式且有效的檢驗方法的情況下,此論文致力於提出在磁核照影像中提取出俱科學量化的生物特徵來辨識輕度認知障礙與阿茲海默症,論文中提出兩種分析演算法,第一個演算法將會先在海馬迴子區中萃取特徵如體積、表面積與曲率來模擬海馬迴結構上的變化,例如萎縮和顯示出大腦皮質生物特徵-皺褶,此外此論文更提出一種創新的生物特徵,為主曲率比率,用來萃取海馬迴表面的皺褶與大腦溝或是大腦迴的相似程度,這些結構形態上的特徵與腦神經生物相關的特徵將於論文中使T測試來進行假說測試,論文中的假說假設當病人由輕度認知障礙轉變成阿茲海默症的情況發生時,腦內海馬迴所提取的曲率將會增加,此外這些特徵將被輸入於多層神經感測器來分類阿茲海默症之嚴重程度。從第一個演算法的結論中,得知當病人由輕度認知障礙轉變成阿茲海默症的情況發生時,體積、表面積與曲率在前下部支持組織(presubiculum)、下部支持組織(subiculum)與CA1、CA3的子區內顯示具有統計意義上的變化,但是當診斷保持在輕度認知障礙時沒有顯著變化。在一系列的特徵選取後,多層神經感測器在分類輕度認知障礙的病人是否轉變成阿茲海默症的實驗中得到77.3%分類準確度。在第二個分析演算法中,則是採用了深度學習演算法中的三維捲積神經網路來分類輕度認知障礙與阿茲海默症,捲積神經網路具有影像處理技術來萃取特徵進行分類,此方法幫助我們測試使用捲積神經網路來分類輕度認知障礙與阿茲海默症的可能性。
Owing to the lack of non-invasive and efficient examination and method to identify Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD), this thesis is dedicated to providing scientific and precise quantitative biomarkers from Magnetic Resonance Imaging (MRI) for identifying the conversion from MCI to AD. Therefore, we established two proposed analytic algorithms. The first proposed algorithm will extract three features – volume, surface area and average of curvature within the hippocampal subfields to model variations including atrophy and the description about the neurobiological characteristics on cortical surface – the folds. Furthermore, we also proposed an innovative biomarker – ratio of principal curvatures for measuring the similarity to gyrus and sulcus. The morphological and neurobiology-related features will be tested by T-test, and the hypothesis about the curvature increasing as MCI to AD will be tested as well. In addition, the extracted features are fed into Multilayer Perceptron classifier for classifying the diagnosis conversion (MCI converter and MCI-to-AD). We found that volume, surface area and average of curvature showed with statistical-meaning changes within presubiculum, subiculum, CA1 and CA3 when diagnosis of patients converted from MCI to AD but smaller variations in the MCI non-converter group. After a series of feature selection and the selection on the subfields of hippocampus, we achieved 77.3% classification accuracy of discrimination of MCI-to-AD group and MCI non-converter group with surface area and average of RPC extracted from subiculum, CA1 and CA3 as features fed into MLP. In the second proposed algorithm, we also applied a deep learning algorithm – 3D Convolutional Neural Network which equipped with image processing skills feature extractor to classify MCI and AD. This proposed algorithm helps us explore the potential to extract multiscale features for CNN according to the experimental results.
[1]. H. Hippius and G. Neundörfer, “The discovery of Alzheimer's disease,” Dialogues Clinical Neuroscience, vol. 5, No. 1, 2003.
[2]. R. J. Bateman, C. Xiong, T. L. S. Benzinger, A. M. Fagan, A. Goate, et al., “Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease,” The New England Journal of Medicine, vol. 367, no. 9, pp. 795-804, 2012.
[3]. C. Reitz, C. Brayne and R. Mayeux, “Epidemiology of Alzheimer disease,” Nature Reviews Neurology, vol. 7, issue 3, pp.137–152, 2011.
[4]. M. Prince, Wimo AGM, G. C. Ali, Y. T. Wu, M. Prina, “World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends,” London: Alzheimer’s Disease International, 2015.
[5]. Alzheimer's Association, “Alzheimer's Association Report Alzheimer's disease facts and figures,” Alzheimer's & Dementia, vol. 13, issue 4, pp. 325-373, 2017.
[6]. J. L. Fuh, S. J. Wang, “Dementia in Taiwan: Past, Present, and Future,” Acta neurologica Taiwanica, vol. 17, No.3, pp. 153-61, 2008.
[7]. C. A. Raji, O. L. Lopez, L. H. Kuller, O. T. Carmichael, J. T. Becker, “Age, Alzheimer disease, and brain structure,” Neurology, vol. 73, issue 22, pp. 1899-1905, 2009.
[8]. G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, P. M. Thompson, “The clinical use of structural MRI in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 2, pp. 67-77, 2009.
[9]. J. A. Kiernan, “Anatomy of the Temporal Lobe,” Epilepsy Research and Treatment, 2012.
[10]. A. R. Preston, H. Eichenbaum, “Interplay of hippocampus and prefrontal cortex in memory,” Current Biology, vol. 23, issue 17, pp. R764-R773, 2013.
[11]. Katharina Henke, “A model for memory systems based on processing modes rather than consciousness,” Nature Reviews Neuroscience, vol. 11, pp. 523-532, 2010.
[12]. L. R. Squire, “Memory systems of the brain: a brief history and current perspective,” Neurobiology of Learning and Memory, vol. 82, Issue 3, pp. 171-177, 2004.
[13]. F. D. Raslau, A. P. Klein, J. L. Ulmer, V. Mathews, L. P. Mark, “Memory part 1: overview,” American Journal of Neuroradiology, vol. 35, issue 11, pp. 2058-2060, 2014.
[14]. F.D. Raslau, I.T. Mark, A.P. Klein, J.L. Ulmer, V. Mathews and L.P. Mark, “Memory Part 2: The Role of the Medial Temporal Lobe,” American Journal of Neuroradiology, vol. 36, issue 5, pp. 846-849, 2015.
[15]. J. J. Knierim, “The hippocampus,” Current Biology, vol. 25, issue 23, pp. R1116-R1121, 2015.
[16]. W. Deng, J. B. Aimone, F. H. Gage, “New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 339-350, 2010.
[17]. L. R. Squire, “Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans”, Psychological Review, vol. 99, issue 2, pp. 195-231, 1992.
[18]. S. P. Alberto, P. F. Matthew, M. Eliezer, T. M. Bradley, “Neuropathological Alterations in Alzheimer Disease,” Cold Spring Harbor Perspectives in Medicine, vol. 1, no. 1, 2011.
[19]. L. C. Silbert, “Does statin use decrease the amount of Alzheimer disease pathology in the brain?” Neurology, vol. 69, issue 9, pp. E8-11, 2007.
[20]. K. Blennow, M. J. de Leon, H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 9533, pp. 387-403, 2006.
[21]. D. P. Devanand, G. Pradhaban, X. Liu, A. Khandji, S. S. De, S. Segal, “Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease,” Neurology, vol. 68, issue 11, pp. 828-836, 2007.
[22]. K. A. Johnson, N. C. Fox, R. A. Sperling, W. E. Klunk, et al., “Brain imaging in Alzheimer disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 4, 2012.
[23]. R. W. Brown, N. C. Yu‐Chung, E. M. Haacke, M. R. Thompson, R. Venkatesan, (2014). Magnetic Resonance Imaging: Physical Principles and Sequence Design. New Jersey: John Wiley & Sons Inc.
[24]. R. C. Petersen, G. E. Smith, S. C. Waring, et al., “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, pp.303–308, 1999.
[25]. M. G. Spillantini, M. Goedert, “Tau pathology and neurodegeneration,” The Lancet Neurology, vol. 12, issue 6, pp. 609-622, 2013.
[26]. J. Hardy, D. J. Selkoe, “The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics,” Science 19, vol. 297, issue 5580, pp. 353-356, 2002.
[27]. M. Bobinski, M. J. De Leon, J. Wegiel, S. DeSanti, A. Convit, “The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease,” Neuroscience, vol. 95, issue 3, pp.721-5, 2000.
[28]. B. Reisberg, “Functional assessment staging (FAST),” Psychopharmacology Bulletin, vol. 24, No. 4, pp.653-659, 1988.
[29]. E. D. Bigler, D. D. Blatter, C. V. Anderson, S. C. Johnson, Shawn D. Gale, et al., “Hippocampal Volume in Normal Aging and Traumatic Brain Injury,” American Journal of Neuroradiology, vol. 18, issue 1, pp. 11-23, 1997.
[30]. B. C. Dickerson, E. Feczko, J. C. Augustinack, J. Pacheco, J. C. Morrisf, B. Fischl, R. L. Buckner, “Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area,” Neurobiology of Aging, vol. 30, pp. 432–440, 2009.
[31]. J. Jin, “Alzheimer Disease,” Journal of the American Medical Association, vol. 313, issue 14, pp. 1488, 2015.
[32]. K. Chen, E. M. Reiman, G. E. Alexander, D. Bandy, R. Renaut, W. R. Crum, et al., “An automated algorithm for the computation of brain volume change from sequential MRIs using an iterative principal component analysis and its evaluation for the assessment of whole-brain atrophy rates in patients with probable Alzheimer's disease,” NeuroImage, vol. 22, issue 1, pp. 134-143, 2004.
[33]. A. Rao, Y. Lee, A. Gass, A. Monsch, “Classification of Alzheimer's Disease from structural MRI using sparse logistic regression with optional spatial regularization,” Conference proceedings IEEE Engineering in Medicine and Biology Society, pp. 4499-4502, 2011.
[34]. E. Westman, J. S. Muehlboeck, A. Simmons, “Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion,” NeuroImage, vol. 62, issue 1, pp. 229-238, 2012.
[35]. M. Liu, D. Zhang, D. Shen, “Hierarchical Fusion of Features and Classifier Decisions for Alzheimer’s Disease Diagnosis,” Human brain mapping, vol. 35, issue 4, pp. 1305-1319, 2014.
[36]. Y. Iturria-Medina, R.C. Sotero, P.J. Toussaint, J.M. Mateos-Pe´rez, A.C. Evans, “Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis,” Nature Communications, vol. 7, no. 11934, 2016.
[37]. K. Chen, N. Ayutyanont, J. B. S. Langbaum, et al., “Characterizing Alzheimer’s Disease using a Hypometabolic Convergence Index,” NeuroImage, vol. 56, issue 1, pp. 52-60, 2011.
[38]. C. Plant, S. J. Teipel, A. Oswald, C. Böhm, T. Meindl, J. Mourao-Miranda et al., “Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease,” NeuroImage, vol. 50, issue 1, pp. 162–174, 2010.
[39]. D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, “Multimodal classification of Alzheimer's disease and mild cognitive impairment,” NeuroImage, vol. 55, issue 3, pp. 856-867, 2011.
[40]. T. Brosch, R. Tam, “Manifold Learning of Brain MRIs by Deep Learning,” Medical Image Computing and Computer-Assisted Intervention, pp. 633-640, 2013.
[41]. N. Amoroso, M. L. Rocca, S. Bruno, T. Maggipinto, A. Monaco, “Brain structural connectivity atrophy in Alzheimer's Disease,” Cornell University Library, 2017.
[42]. A. Payan, G. Montana, “Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks,” International Conference on Pattern Recognition Applications and Methods, vol. 2, pp. 355-362, 2015.
[43]. H. I. Suk, S. W. Lee, D. Shen, “Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis,” NeuroImage, 101:569–582, 2014.
[44]. H. I. Suk, D. Shen, “Deep Learning-Based Feature Representation for AD/MCI Classification,” International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 16, no. 2, pp.583-590, 2013.
[45]. H. I. Suk, S. W. Lee, D. Shen, “Latent feature representation with stacked auto-encoder for AD/MCI diagnosis,” Brain Structure and Function, vol. 220, no.2, pp.841-859, 2015.
[46]. S. Liu, S. Liu, W. Cai1, S. Pujol, R. Kikinis, Dagan Feng, “Early diagnosis of Alzheimer's disease with deep learning,” IEEE 11th International Symposium on Biomedical Imaging, 2014.
[47]. S. Liu, S. Liu, W. Cai, et al., “Multi-Modal Neuroimaging Feature Learning for Multi-Class Diagnosis of Alzheimer’s Disease,“ IEEE transactions on bio-medical engineering, vol. 62, no. 4, pp.1132-1140, 2015.
[48]. S. Sarraf, D. D. DeSouza, J. Anderson, G. Tofighi, “DeepAD: Alzheimer's Disease Classification via Deep Convolutional Neural Networks using MRI and fMRI,” bioRxiv, doi: https://doi.org/10.1101/070441, 2016.
[49]. A. Valliani, A. Soni, “Deep Residual Nets for Improved Alzheimer’s Diagnosis,” 8th ACM International Conference, 2017.
[50]. S. Chaplot, L.M. Patnaik, N.R. Jagannathan, “Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network,” Biomedical Signal Processing and Control, vol. 1, issue 1, pp. 86-92, 2006.
[51]. B. Fischl, “FreeSurfer,” Neuroimage, vol. 62, issue 2, 2012.
[52]. A. M. Dale, B. Fischl, M. I. Sereno, “Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction,” Neuroimage, vol. 9, issue 2, pp. 179-194, 1999.
[53]. B. Fischl, M. I. Sereno, A. M. Dale, “Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system,” Neuroimage, vol. 9, issue 2, pp. 195-207, 1999.
[54]. J. E. Iglesias, J. C. Augustinack, K. Nguyen, C. M. Player, A. Player, M. Wright, et al., “A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI,” Neuroimage, vol. 115, pp. 117-137, 2015.
[55]. C. D. Whelan, D. P. Hibar, L. S. van Velzen, A. S. Zannas, T. Carrillo-Roa, et al., “Heritability and reliability of automatically segmented human hippocampal formation subregions,” Neuroimage, vol. 128, pp. 125-137, 2016.
[56]. R. A. Morey, M. C. Petty, Y. Xua, J. P. Hayes, H. R. Wagner II, et al., “A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes,” Neuroimage, vol. 45, issue 3, pp. 855–866, 2009.
[57]. S. O’Mara, “The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us,” Journal of Anatomy, vol. 207, issue 3, pp. 271-282, 2005.
[58]. R. Insausti, M. Muñoz-López, A. M. Insausti, E. Artacho-Pérula, “The Human Periallocortex: Layer Pattern in Presubiculum, Parasubiculum and Entorhinal Cortex. A Review,” Frontiers in Neuroanatomy, vol. 11, article 84, 2017.
[59]. W. E. Lorensen, H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” Association of Computing Machinery's Special Interest Group on Computer Graphics and Interactive Techniques, vol. 21, no.4, pp. 163-169, 1987.
[60]. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl and H. P. Seidel, “Laplacian Surface Editing,” Eurographics Symposium on Geometry Processing, pp. 175-184, 2004.
[61]. M. Boucher, S. Whitesides, A. Evans, “Depth potential function for folding pattern representation, registration and analysis,” Medical Image Analysis, vol. 13, issue 2, pp. 203-214, 2009.
[62]. L. Alboul, G. Kloosterman, C. Traas, R. Damme, “Best data-dependent triangulations,” Journal of Computational and Applied Mathematics, vol. 119, issues 1-2, pp. 1-12, 2000.
[63]. P. J. Besl, N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, issue 2, pp. 239-256, 1992.
[64]. A. K. Jain, R. P. W. Duin, J. Mao, “Statistical pattern recognition: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence archive, vol. 22, issue 1, pp. 4-37, 2000.
[65]. Y. LeCun, Y. Bengio and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[66]. C. Harris, M. Stephens, “A combined corner and edge detector,” Proceedings of the Alvey Vision Conference, pp. 147-152, 1988.
[67]. S. M. Smith, J. M. Brady, “SUSAN—A New Approach to Low Level Image Processing,” International Journal of Computer Vision, vol. 23, No. 1, pp. 45–78, 1997.
[68]. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, issue 2, pp. 91-110, 2004.
[69]. N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
[70]. E. Rosten, T. Drummond, “Machine learning for high-speed corner detection,” European Conference on Computer Vision, pp 430-443, 2006.
[71]. H. Bay, T. Tuytelaars, L. V. Gool, “SURF: Speeded Up Robust Features,” European Conference on Computer Vision, pp 404-417, 2006.
[72]. M. Calonder, V. Lepetit, C. Strecha, P. Fua, “BRIEF: Binary Robust Independent Elementary Features,” European Conference on Computer Vision, pp 778-792, 2010.
[73]. E. Rublee, V. Rabaud, K. Konolige, G. Bradski, “ORB: an efficient alternative to SIFT or SURF,” International Conference on Computer Vision, pp. 2564-2571, 2011.
[74]. T. Tuytelaars, K. Mikolajczyk, “Local invariant feature detectors: a survey,” Foundations and Trends in Computer Graphics and Vision archive, vol. 3, issue 3, pp. 177-280, 2008.
[75]. E. Karami, S. Prasad, M. Shehata, “Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images,” Newfoundland Electrical and Computer Engineering Conference, 2015.
[76]. K. Mikolajczyk, C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, issue 10, pp. 1615-1630, 2005.
[77]. I. Goodfellow, Y. Bengio, A. Courville, (2016). Deep Learning. MIT Press.
[78]. M. D. Zeiler, R. Fergus, “Visualizing and Understanding Convolutional Networks,” European Conference on Computer Vision, pp. 818-833, 2014.
[79]. A. O. Aremu, J. P. J. Brennan-Craddock, A. Panesar, I. A. Ashcroft, R. J. M. Hague, R. D. Wildman, C. Tuck, “A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing,” Additive Manufacturing, vol. 13, pp. 1-13, 2017.
[80]. National Institute on Aging, National Institutes of Health, “Alzheimer's Disease: Unraveling the Mystery,” 2003.
[81]. NingQian, “On the momentum term in gradient descent learning algorithms,” Neural Networks, vol. 12, issue 1, pp. 145-151, 1999.
[82]. Sebastian Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747v2 [cs.LG].
[83]. Y. Lecun, L. Bottou and Y. Bengio, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, issue 11, 1998.
[84]. D. P. Kingma, J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION,” International Conference for Learning Representations, San Diego, 2015.
[85]. A. P. Witkin, “Scale-space filtering,” International joint conference on Artificial intelligence, vol. 2, pp. 1019-1022, 1983.
[86]. W J.P. Henneman, J D. Sluimer, J Barnes, W M. van der Flier, I C. Sluimer, N C. Fox, FRCP, P Scheltens, et al.,” Hippocampal atrophy rates in Alzheimer disease,” Neurology, vol. 72, issue 11, 2009.
[87]. M. Chupin, E. Gérardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehéricy, et al., “Fully Automatic Hippocampus Segmentation and Classification in Alzheimer’s Disease and Mild Cognitive Impairment Applied on Data from ADNI” Hippocampus. vol. 19, issue 6, pp. 579-587, 2009.
[88]. C. Misra, Y. Fan, and C. Davatzikos, “Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI,” Neuroimage, vol. 44, issue 4, pp. 1415–1422, 2009.
[89]. Y. Liu, T. Paajanen, Y. Zhang, E. Westman, L. O. Wahlund, A. Simmons, et al., “Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer's disease,” Neurobiology of Aging, vol. 31, issue 8, pp. 1375-1385, 2010.
[90]. C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, J. Q. Trojanowski, “Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification,” Neurobiology of Aging, vol. 32, issue 12, pp. 2322.e19-2322.e27, 2011.
[91]. R. Wolz., V. Julkunen, J. Koikkalainen, E. Niskanen, D. P. Zhang, D. Rueckert, et al., “Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer’s Disease,” PLOS ONE, vol. 6, issue 10, article e25446, 2011.
[92]. S. Duchesne and A. Mouiha, “Morphological Factor Estimation via High-Dimensional Reduction: Prediction of MCI Conversion to Probable AD,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 914085, 2011.
[93]. S. G. Costafreda, I. D. Dinov, Z. Tu, Y. Shi, C. Y. Liu, I. Kloszewska, “Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment,” NeuroImage, vol. 56, issue 1, pp. 212-219, 2011.
[94]. P. Coupé, S. F. Eskildsen, J. V. Manjón, V. S. Fonov, J. C. Pruessner, M. Allard, “Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease,” NeuroImage: Clinical, vol. 1, issue 1, pp. 141-152, 2012.
[95]. B. Cheng, D. Zhang, and D. Shen, “Domain Transfer Learning for MCI Conversion Prediction,” Medical Image Computing and Computer-Assisted Intervention, 15(0 1): 82–90, 2012.
[96]. M. Ewers, C. Walshc, J. Q. Trojanowskid, L. M. Shawd, R. C. Petersene, C. R. Jack Jr. et al., “Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance,” Neurobiology of Aging, vol. 33, pp. 1203-1214, 2012.
[97]. Eric Westman, J. S. Muehlboeck, A. Simmons, “Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion,” NeuroImage, vol. 62, pp.229-238, 2012.
[98]. D. Zhang, D. Shen, and the Alzheimer’s Disease Neuroimaging Initiative, “Multi-Modal Multi-Task Learning for Joint Prediction of Multiple Regression and Classification Variables in Alzheimer’s Disease,” NeuroImage, vol. 59, issue 2, pp. 895-907, 2012.
[99]. D. Zhang, D. Shen, and the Alzheimer’s Disease Neuroimaging Initiative, “Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers,” PLOS ONE, vol. 7, issue 3, article e33182, 2012.
[100]. J. Young, M. Modat, M. J. Cardoso, A. Mendelson, D. Cash, S. Ourselin, the Alzheimer's Disease Neuroimaging Initiative, “Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment,” NeuroImage: Clinical, vol. 2, pp. 735–745, 2013.
[101]. C. Y. Wee, P. T. Yap, D. Shen, and Alzheimer’s Disease Neuroimaging Initiative, “Prediction of Alzheimer’s Disease and Mild Cognitive Impairment Using Baseline Cortical Morphological Abnormality Patterns,” Human Brain Mapping, vol. 34, issue 12, pp. 3411-3425, 2013.
[102]. H. Il Suk and D. Shen, “Deep Learning-Based Feature Representation for AD/MCI Classification,” Medical Image Computing and Computer-Assisted Intervention, 16(Pt 2):583-90, 2013.
[103]. S. F. Eskildsen, P. Coupé, D. G. Lorenzo, V. Fonovb, J. C. Pruessnere, D. L. Collinsb, and The Alzheimer’s Disease Neuroimaging Initiative, “Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning,” NeuroImage, vol. 65, pp. 511-521, 2013.
[104]. H. Il Suk, S. W. Lee, D. Shen, the Alzheimer's Disease Neuroimaging Initiative, “Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis,” NeuroImage, vol. 101, pp. 569-582, 2014.
[105]. M. Liu, D. Zhang, D. Shen, and the Alzheimer’s Disease Neuroimaging Initiative, “View-Centralized Multi-Atlas Classification forAlzheimer’s Disease Diagnosis,” Human Brain Mapping, vol. 36, issue 5, pp. 1847–1865, 2015.
[106]. B. Cheng, “Multimodal manifold-regularized transfer learning for MCI conversion prediction,” Brain Imaging and Behavior, vol. 9, issue 4, pp. 913–926, 2015.
[107]. H. Il Suk, S. W. Lee, D. Shen, the Alzheimer’s Disease Neuroimaging Initiative, “Latent feature representation with stacked auto-encoder for AD/MCI diagnosis,” Brain Structure and Function, vol. 220, issue 2, pp. 841–859, 2015.
[108]. C. Cabral, P. M. Morgado, D. C. Costac, M. Silveira, and the Alzheimer׳s Disease Neuroimaging Initiative, “Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages,” Computers in Biology and Medicine, vol. 58, pp. 101-109, 2015.
[109]. E. Moradia, A. Pepe, C. Gaserc, H. Huttunen, J. Tohka, and the Alzheimer's Disease Neuroimaging Initiative, “Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects,” NeuroImage, vol. 104, pp. 398-412, 2015.
[110]. I. O. Korolev, L. L. Symonds, A. C. Bozoki, Alzheimer's Disease Neuroimaging Initiative, “Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification,” PLOS ONE, vol. 11, issue 2, article e0138866, 2016.
[111]. Y. Fan, D. Shen, R. C. Gur, R. E. Gur, C. Davatzikos, “COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements,” IEEE Transactions on Medical Imaging, vol. 26, issue 1, pp. 93-105, 2007.
校內:2023-10-16公開