| 研究生: |
史名揚 Shih, Ming-Yang |
|---|---|
| 論文名稱: |
以無網格法模擬三維海底崩移引致波浪傳遞及溯升 Simulation of Propagation and Run-up of Three Dimensional Landslide-induced Waves Using Meshless Method |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 三維海底崩移 、無網格法 、修正有限配點法 |
| 外文關鍵詞: | meshless method, modified finite point method, three dimensional landslide |
| 相關次數: | 點閱:85 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以無網格法所建立的三維數值模式,求解拉普拉斯方程式(Laplace equation),模擬了三維非線性造波問題及三維移動邊界海底崩移的問題。本研究數值模式主要架構為,Wu et al. (2015)改善Chiue (2014)的三維模式,此模式的特色為以局部近似(Local approximation)求解,這個方法增加了計算上的效率,本研究將此模式運用在模擬移動邊界的問題上,並且進行模式驗證。
在模式驗證的部分,本研究首先與Whalin (1971)規則波通過變水深底床的問題進行比較,以驗證此模式在波浪傳遞問題上的準確性,在驗證上獲得良好的結果,在調和波高與討論其通過潛堤時能量傳遞之情形也與實驗結果相符。
移動邊界的問題上本研究將無網格法加入模擬移動邊界問題的功能,在此問題上,無網格法的優點在於不需要在不同時刻重新佈置網格,在本研究中選擇Enet and Grilli (2007) 和Fuhrman and Madsen (2009)的模擬結果進行比較,得知本模式與實驗結果有較好的吻合度。
在模式驗證上與實驗結果比較中得出相符的結果,隨後將此模式應用於模擬完全潛沒式的海底崩移問題上,本研究採用Enet and Grilli (2007)所用的崩移物體形狀及底床配置並加大其數值水槽寬度,以觀察崩移物體所造成的波浪及溯升,並且探討邊緣波(Edge wave)效應的物理現象。本研究利用小波轉換針對海底崩移所造成的波浪傳遞在近岸附近做分析,得到與Liu et al. (1998)相似的結果,間接說明崩移物體所造成的波浪在近岸會受到邊緣波影響。最後,提出本研究所模擬之結果,對其歸納並討論,且在最後對於此數值模式之未來發展提出建議。
This research is basically focused on 3-D water wave induced by landslide. Since it involves moving boundaries and large deformation of the computational domain, a 3-D numerical model is established with a meshless method and a fully nonlinear Lagrangian time marching scheme. Robust local polynomial collocation method which developed in the way that the collocations have to satisfy governing and boundary condition if it is the boundary point used in this study. This method is more efficient and accurate than the RBF-collocation method. Furthermore, due to its Lagrangian description of the flow motion, meshless method is effective in dealing with moving boundary problems such as free surface, landslide and wave-maker. Three dimensional experiments which regular waves pass an uneven bottom are chosen for simulation in order to validate the model. A fairly good agreement observed by comparing with the experiment data indicates that this model can successfully capture wave propagation phenomenon. The present numerical results which wave generated by a submerged landslide are compared with other numerical solutions using high-order Boussinesq-type model and experiment data in order to validate the ability of solving moving boundary problems in this meshless model. The results of simulation indicated that the present method is better than high-order Boussinesq-type model. Besides, the present model could predict the run-up height accurately. In this study, the edge waves caused by landslide-induced waves is disscussed and proved that the landslide-induced waves would cause edge waves by time-frequency analysis with wavelet transform.
1. Boo, S., C. Kim and M. Kim (1994). "A numerical wave tank for nonlinear irregular waves by 3-D higher order boundary element method." International Journal of Offshore and Polar Engineering 4(04).
2. Chen, P.-C. L. L.-S. H. C.-H. (2012). "Observation of infragravity waves at Anping coast." 海洋工程學刊.
3. Enet, F. and S. T. Grilli (2007). "Experimental study of tsunami generation by three-dimensional rigid underwater landslides." Journal of waterway, port, coastal, and ocean engineering 133(6): 442-454.
4. Fuhrman, D. R. and P. A. Madsen (2009). "Tsunami generation, propagation, and run-up with a high-order Boussinesq model." Coastal Engineering 56(7): 747-758.
5. González, F., K. Satake, E. Boss and H. Mofjeld (1995). "Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunami." Pure and Applied Geophysics 144(3-4): 409-426.
6. Grilli, S. T., S. Vogelmann and P. Watts (2002). "Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides." Engineering Analysis with Boundary Elements 26(4): 301-313.
7. Grilli, S. T. and P. Watts (1999). "Modeling of waves generated by a moving submerged body. Applications to underwater landslides." Engineering Analysis with boundary elements 23(8): 645-656.
8. Huang, T. Y., S. C. Hsiao and N. J. Wu (2014). "Nonlinear wave propagation and run-up generated by subaerial landslides modeled using meshless method." Computational Mechanics 53(2): 203-214.
9. Kaihatu, J. M. and J. T. Kirby (1995). "Nonlinear transformation of waves in finite water depth." Physics of Fluids 7(8): 1903-1914.
10. Liu, P.-F., H. Yeh, P. Lin, K.-T. Chang and Y.-S. Cho (1998). "Generation and evolution of edge-wave packets." Physics of Fluids (1994-present) 10(7): 1635-1657.
11. Lynett, P. and P. L.-F. Liu (2002). A numerical study of submarine–landslide–generated waves and run–up. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society.
12. Lynett, P. and P. L. F. Liu (2005). "A numerical study of the run‐up generated by three‐dimensional landslides." Journal of Geophysical Research: Oceans (1978–2012) 110(C3).
13. Ma, G., F. Shi and J. T. Kirby (2012). "Shock-capturing non-hydrostatic model for fully dispersive surface wave processes." Ocean Modelling 43–44: 22-35.
14. Seo, S.-N. and P. L. F. Liu (2013). "Edge waves generated by the landslide on a sloping beach." Coastal Engineering 73: 133-150.
15. Torrence, C. and G. P. Compo (1998). "A practical guide to wavelet analysis." Bulletin of the American Meteorological society 79(1): 61-78.
16. Watts, P., S. Grilli, J. Kirby, G. Fryer and D. Tappin (2003). "Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model." Natural Hazards And Earth System Science 3(5): 391-402.
17. Wu, C. H., C.-C. Young, Q. Chen and P. J. Lynett (2010). "Efficient nonhydrostatic modeling of surface waves from deep to shallow water." Journal of waterway, port, coastal, and ocean engineering 136(2): 104-118.
18. Wu, N. J. and K. A. Chang (2011). "Simulation of free‐surface waves in liquid sloshing using a domain‐type meshless method." International Journal for Numerical Methods in Fluids 67(3): 269-288.
19. Wu, N. J. and T. K. Tsay (2013). "A robust local polynomial collocation method." International Journal for Numerical Methods in Engineering 93(4): 355-375.
20. Wu, N.-J., T.-K. Tsay and D. Young (2008). "Computation of nonlinear free-surface flows by a meshless numerical method." Journal of waterway, port, coastal, and ocean engineering 134(2): 97-103.
21. 吳南靖, 蕭士俊 and 吳漢倫 (2015). "Application of Local Polynomial Collocation Method to the Simulation of 3D Liquid Sloshing." 海洋工程學刊 15(2): 67-83.
22. Thurman, H. V. (1993) "Essentials of Oceanography", 4th ed.
23. Chiue, L. K., Hsu, C. E., Wu, N. J. and Hsiao, S.C. (2014) “Simulation and analysis of wave interaction with structure using meshless method,”Proceedings of the 36th Ocean Engineering Conference, Hsinchu, Taiwan, pp. 209-214.
24. Chiue, L. K. (2014) “Simulation and analysis of wave interaction with structure using meshless method,”