| 研究生: |
邱政斌 Chiu, Cheng-Pin |
|---|---|
| 論文名稱: |
以輸出選擇為基礎的響應壓縮技術及其所需觀察資料之下限分析 Output-Selection-Based Response Compaction and Lower Bound on Observation Bits |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 輸出選擇 、響應壓縮 、下限分析 |
| 外文關鍵詞: | lower bound, output selection, test response compaction |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解決龐大測試資料的問題,對於測試響應資料傳統上常使用硬體壓縮電路來降低測試響應的資料量,雖然可以達到相當不錯的壓縮率,但是使用硬體壓縮電路會面臨兩大問題:一個是失真問題,另一個為不確定值覆蓋錯誤資訊的問題。在本篇論文中,我們提出了一個以輸出選擇為基礎的響應壓縮技術,藉由輸出選擇的機制,選擇所想要觀察的響應資料,在此機制下,由於所想要觀察的輸出響應可直接觀察,因此不會有前述的失真以及不確定值覆蓋錯誤資訊的兩個問題。我們並且提出了相對應的啟發式方法,在不影響錯誤涵蓋率之下加以有效地選取所需觀察的輸出響應。也因為此選取機制,只觀察所須觀察的輸出響應,來加以壓縮測試響應的資料量。由實驗結果顯示,對於ISCAS的標準電路使用已緊密壓縮的測試向量,平均只需要觀察其中14%的測試響應即可達到原來的錯誤涵蓋率,其中的幾個大電路更只需要觀察5%即可。此外,我們更針對所需要觀察的資料提出了一個下限分析,此下限分析是根據一個電路上的特性加以進行運算,透過此一特性我們可以在相當低的空間複雜度以及運算複雜度下求得下限。實驗結果顯示,所求得的下限與啟發式方法所得到的觀察數平均而言只相差13%,可知啟發式方法所得的觀察數與最佳解相距不遠。
Conventionally, XOR-tree based compactors or multiple input signature registers (MISRs) are used to reduce test response volume and a very high compaction ratio has been achieved. However, these designs may suffer from the aliasing, the unknown-value and/or the X-masking problems. In this paper, we introduce a new test compaction method called the output-selection-based response compaction method that that can eliminate these problems efficiently. The basic idea is to observe only a fraction of output bits while still guarantee the same fault coverage as that can be achieved by observing all output bits. We shall show that this problem is equivalent to the set cover problem which is a well-known NP-complete problem. We thus propose a heuristic selection procedure to efficiently select the output bits that need to be observed. Experimental results for ISCAS benchmark circuits show that even for highly compacted test patterns sets, only about 5% of outputs of the test sets need to be observed for most large benchmark circuits. To evaluate how effective the proposed method is, we also analyze the lower bound of the number of bits to be selected and present an algorithm with low memory and computation complexity to estimate this lower bound. The difference between the lower bound and the number of selected observation bits obtained by the heuristic procedure is only approximately 13% on the average.
[1] L. T. Wang, C. W. Wu, and X. Wen, “VLSI Test Principles and Architectures: Design for Testability,” Morgan Kaufmann, 2006.
[2] J. Rajski, J. Tyszer, C. Wang, and S. M. Reddy, “Finite Memory test response compactors for embedded test applications,” IEEE Trans. Computer-Aided Design, Vol. 24, pp. 622-634, April 2005.
[3] P. Wohl, J. A. Waicukauski, and S. Patel, “Scalable Selector Architecture for X-Tolerant Deterministic BIST,” in Proc. Design Automation Conf., pp. 934-939, 2004.
[4] I. Pomeranz, S. Kundu, and S. M. Reddy, “On Output Response Compression in the Presence of Unknown Output values,” in Proc. Design Automation Conf., pp. 255-258, 2002.
[5] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, A. Ferko, B. Keller, D. Scott, B. Koenemann, and T. Onodera, “Extending OPMISR Beyond 10x Scan Test Efficiency,” IEEE Design & Test of Computers, Vol. 19, pp. 65-73, 2002.
[6] J. Rajski, M. Kassab, N. Mukherjee, N. Tamarapalli, J. Tyszer, and J. Qian, “Embedded Deterministic Test for Low-Cost Manufacturing,” IEEE Design & Test of Computers, Vol. 20, pp. 58-66, 2003.
[7] M. Naruse, I. Porneranz, S. M. Reddy, and S. Kundu, “On-Chip Compression of Output Responses with Unknown Values Using LFSR Reseeding,” in Proc. Int. Test Conf., pp. 1060-1068, 2003.
[8] H. Ando, “Testing VLSI with Random Access Scan,” in Proc. COMPCON, pp. 50-52, 1980.
[9] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the Set Covering Problem,” Annals of Operations Research, Vol. 98, pp. 353-371, 2000.
[10] X. Y. Li, M. F. Stallmann, and F. Brglez, “Effective Bounding Techniques for Solving Unate and Binate Covering Problems,” in Proc. Design Automation Conf., pp. 385-390, 2005.
[11] O. Coudert, "Two-Level Logic Minimization: An Overview", Integration, VLSI journal, pp. 97-140, Oct. 1994.
[12] O. Coudert, and J. C. Madre, “New Ideas for Solving Covering Problems,” in Proc. Design Automation Conf., pp. 641-646, 1995.
[13] Vangelis T. Paschos, “A Survey of Approximately Optimal Solutions to Some Covering And Packing Problems,” ACM Computing Surveys, Vol. 29, pp. 171-209, June 1997.
[14] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost Effective Generation of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits,” IEEE Trans. Computer-Aided Design, Vol. 14, pp. 1496-1504, Dec. 1995.