簡易檢索 / 詳目顯示

研究生: 張子廉
Chang, Tzu-Lien
論文名稱: 以熱氧化氮化鈦製備奈米級二氧化鈦薄膜之重覆性雙極電阻開關的研究
The study of reproducible bipolar resistive switch of TiO2 nanolayer prepared by thermal oxidized TiN thin films
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 73
中文關鍵詞: 陽極氧化熱氧化二氧化鈦氮化鈦
外文關鍵詞: resistive swicthing thin film, TiO2, TiN
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前電子產品所使用的記憶元件的需求不再只是儲存與記錄等性質;而是希望儲存件輕薄短小、高儲存容量、消耗功率降低、儲存速度快、價錢便宜。目前較成熟非揮發記憶元件以快閃記憶體以及硬碟機為主要。前述這些元件不是製程較為複雜,就是有馬達及懸臂等機械裝置。是不是有適合的材料,可以單層薄膜其電阻值能夠隨不同極性的偏壓來做改變,且具有非揮發性,切換速度快等特點,以及相當高的開狀態及關狀態阻抗比值。最重要的是製程簡單並且與目前積體電路製程相容,這將會是本文研究的重點。在其他方面,薄膜本身具有組抗變化的特性,換句話說可以當開關來用,如以適當的圖形化及電極配置,即可達到類似傳統電晶體去組合而成的基本邏輯匣。之後章節將簡單介紹在早期廣被研究的傳統電阻切換薄膜:固態電解質。以及電阻切換薄膜有別於記憶元件的另類應用。
    許多過渡金屬的二元氧化物具有電阻切換的特性,但理論上始終無一致的說法。在本論文中以射頻磁控濺鍍製作氮化鈦薄膜。利用熱氧化及陽極氧化,來得到高品質二氧化鈦奈米薄膜並製作簡易(由上到下依序為:鉑,二氧化鈦,氮化鈦,銥)三明治結構元件。作電性分析,觀察何種製程條件可得到電阻切換的特性,並由結果整理出相關理論。根據實驗結果,熱氧化與陽極氧化對氮化鈦表面均可形成二氧化鈦奈米薄膜,蒸鍍上白金電極後需再經熱處理,可量得阻抗切換的特性。

    The requirement of storage device not only the propose to store data. These kind of devices are going to handle huge amounts of digital data. Therefore, The non-volatile memories requirement of the development that have high speed, high density, low power consumption, high endurance, and low price. The non-volatile memory was focused on flash memory and hard disk. But the fabrication and the machinery is complex. One of the candidates of next generation advanced non-volatile memory that can replace flash memory is resistive random access memory. The simple structure consists of two terminal electrodes that sandwich a material normally resistive to change. In other words, the resistive of single layer thin films can switch to different stable state by applying negative or positive bias voltage. It advantage is non- volatile, high on /off ratio, easy to fabricate, and compatible with the CMOS fabrication. The resistive switching thin film which make correct patterns and allocate electrode can even be a basic logic gate. In the early stage the that was study widely. The Solid electrolyte, the first generation resistive switching films response and the alternative application of resistive switching thin films. That will be present latter.

    Some transition metal oxide can be observe the resistive switching behavior. But the mechanism is not be announce in unanimity. In this thesis, the TiN thin film was prepared by RF magnetron sputtering system. Obtaining the high quality TiO2 nanolayer by thermal oxidation and anodic oxidation. Then the Pt/ TiN/TiO2/Ir sandwich structure device was made. And measurement the electrical property. The goal in this thes is evaluating which recipe will be most suitable, and to observe the resistive switching behavior on the TiO2 thin film.

    Chapter 1 Introduction.................................................................................................... 1 1-1Background and Motivations................................................................................ 1 1-1.1 Solid electrolyte .......................................................................................... 3 1-1.2 Alternative application of the resistive switching films.......................... 5 1-2 Thesis outline......................................................................................................... 7 Chapter 2 Theoretical Background .............................................................................. 12 2-1 The characterizations of TiN.............................................................................. 12 2-2 The characterizations of TiO2 ............................................................................ 13 2-3 Resistive switching of some oxidize films: Mott transition? ........................... 14 2-4 Base electrodes material in silicon..................................................................... 16 2-5 The glow discharge process ................................................................................ 17 2-5.1 Interactions of ions with surface............................................................. 18 2-5.2 RF magnetron sputtering deposition...................................................... 19 2-5.2 Reactive sputtering method .................................................................... 21 Chapter 3 Experiments and Measurements ................................................................ 28 3-1 Substrate preparation......................................................................................... 28 3-2 Forming TiN thin films....................................................................................... 29 3-3 Forming TiO2 nano layer on TiN thin films. .................................................... 29 3-3.1 Furnace thermal oxidation...................................................................... 30 3-3.2 Pure water anodic oxidation ................................................................... 30 3-4 Growth of Electrode............................................................................................ 32 3-5 Experiment and Measurement .......................................................................... 32 3-5.1 Physical characterization techniques ..................................................... 32 3-5.2 Electric Characterization techniques..................................................... 34 Chapter 4 Result and Discussion .................................................................................. 41 4-1 Deposition rate .................................................................................................... 41 4-2 XRD Measurement ............................................................................................. 42 4-3 I-V characteristic measurement ........................................................................ 43 4-4 SEM results.......................................................................................................... 46 4-5 Dynamic SIMS analysis...................................................................................... 47 Chapter 5 Conclusion and Future work....................................................................... 65 5-1 Conclusion ........................................................................................................... 65 5-2 Future work......................................................................................................... 66

    Q. Liu, N. J. Wu and A. Ignatiev: Appl. Phys. Lett. 76 (2000) 2749.

    W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A.
    Burnaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue,
    T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Liu, N. J. Wu and A.
    Ignatiev: Int. Electron Devices Meet., Tech. Dig., 2002, p. 193.

    R. Waser, Nanoelectronics and Information Technology (Wiley-VCH,
    Weinheim, 2003), p. 527.

    I. G. Baek et al., Technical Digest International Electron Devices Meeting,
    San Francisco, CA, 12~14 December 2004.

    M. N. Kozicki, M. Mitkota, M. Park, M. Balakrishnan, and C. Gopalan,
    Superlattices Microstruct. 34, 459 (2003).

    A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, and Y. Y.
    Xue, Appl. Phys. Lett. 83, 957 (2003).

    A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature(London)388, 50 (1997).

    Y. C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, R. Liu,and C. Y. Lu, Tech. Dig. - Int. Electron Devices Meet. 2003, 37.4.1.
    7J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964).

    F. Argall, Solid-State Electron. 11, 535 (1968).

    Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck,and S. J. Wind, Appl. Phys. Lett. 78, 3738 (2001).

    G. Dearnaley, D. V. Morgan, and A. M. Stoneham, J. Non-Cryst. Solids 4,593 (1970).

    N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

    C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang,
    Appl. Phys. Lett. 86, 262907 (2005).

    B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwanga, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl.
    Phys. 98, 033715 (2005).

    T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, “Quantum point
    contact switch using solid electrochemical reaction,” in Ext. Abs. Int.
    Conf. Solid State Devices and Materials (SSDM 2001), Sep. 2001, p.
    564.

    T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama,
    and M. Aono, “Nanometer-scale switches using copper sulfide,” Appl.
    Phys. Lett., vol. 82, pp. 3032–3034, May 2003.

    Shunichi Kaeriyama, Toshitsugu Sakamoto, Hiroshi Sunamura, Masayuki Mizuno, Hisao Kawaura, Tsuyoshi Hasegawa, Kazuya Terabe, Tomonobu Nakayama, and Masakazu Aono A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 1, JANUARY 2005

    K. Terabe, T. Hasegawa3, T. Nakayama & M. Aono Quantized conductance atomicswitch NATURE VOL 433 6 JANUARY 2005

    S. Logothetidis, I. Alexandrou, S. Kokkou, 1996, SuRF. and Coat. Technol., 80, (1996), 66.
    P. Patsalas, C. Charitidis, S. Logothetidis, SuRF. and Coat. Technol., 125, (2000), 335.
    D. Mah_eo, J.M. Poitevin, Thin Solid Films, 215, (1992), 8.

    J.H. Huang, C.H. Lin, H. Chen, Materials Chemistry and Physics, 59, (1999), 49.
    W. Chou, G. Yu, J. Huang, Surf. and Coat. Technol., 140, (2000), 206.

    Ozlem DUYAR, Cengiz KOC_U, H. Zafer DURUSOY Preparation and Optimization of High Quality TiN Films Turk J Phys27 (2003) , 519-527.

    M-A. Nicolet, Thin Solid Films 52, 415 (1987)

    N. Kumar, M.G.. Fissel, K. pourrezaei, B. Lee and E.C.Douglas,Thin solid films 153 287(1987)

    M.Mandal and h. Hoffmann P.Kucher, J. Appl. Phys,68(5),1 september 1990

    Kavan L.; Grtzel, M. Electrochim. Acta, v. 40, p.643-652, 1995.

    Kang, T.-S.; Kim, D.; Kim, K.-J. J. Electrochem Soc. ,v. 145, p. 1982-1986, 1998.

    Mergel,D.; BuschendoRF,D.; Eggert, S.;GrammesR.; Samset, B. Thin Solid Films, v. 371, p. 218-244, 2000.

    Sabate, J.; Anderson, M.A.; Kikkawa, H.; Xu, Q.;Cervera-March, S.; Hill Jr., C.G. J. Catal., v. 134, p.36-40, 1992.

    Kim, H.S.; Gilmer, D.C.; Campbell S.A.; Polla, D.L. Appl. Phys. Lett., v. 69, p. 3860-3862, 1996.

    Aarik, J.; Aidla, A.; Kiisler, A.-A.; Uustare, T.; Sammelselg, V. Thin SolidFilms, v. 305, p. 270-273, 1997.

    Gao, Y.; Liang, Y.; Chambers, S.A. Surf. Sci., v. 365,p. 638-648, 1996.

    Yoon, H.S.; Kim, S.K.; Im, H.S. Bull. Korean Chem. Soc., v. 18, p. 641-645, 1997.

    BemAmor, S.; Baud,G.; Besse, J.P.; Jacquet,M. Thin Solid Films, v. 293, p.163-169, 1997.

    M.I.B. Bernardi*a, E.J.H. Leea, P.N. Lisboa-Filhoa, E.R. Leitea,E. Longoa, J.A Varelab TiO2 Thin Film Growth Using the MOCVD Method Materials Research, Vol. 4, No. 3, 223-6, 2001.

    N.F.Mott, Proc. R. Soc. :adv. phys.16, 49(1967)

    Charles Kittel Introduction to Solid State Physics sixth edition John Wiley Son Inc P.2689~P269.

    H.Yang, K.Prasd, R. Snjiine, P.E. Schmid, and F. Levy Elecerical and optical properties of TiO2 anatase thin films J. Appl. Phys. 75(4)

    A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz
    Base electrodes for high dielectric constant oxide materials
    in silicon technology J. Mater. Res., Vol. 7, No. 12, Dec 1992

    Brain Chapman. Glow Discharge Process A WILEY INTERSCIENCE PUBLICATION chapter 6 P.177~P.249

    S. Gwo,a) C.-L. Yeh, P.-F. Chen, Y.-C. Chou, and T. T. Chen T.-S. Chao, S.-F. Hu, and T.-Y. Huang Local electric-field-induced oxidation of titanium nitride films APPLIED PHYSICS LETTERS VOLUME 74, NUMBER 8

    B. D. CULLI Element of X-RAY DIFFRACTION (Second edition) Chapter3 P.86~P.88

    Masayuki Fujimotoa_ and Hiroshi Koyama, Masashi Konagai, Yasunari Hosoi, Kazuya Ishihara, Shigeo Ohnishi, and Nobuyoshi Awaya, TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar
    resistive switching APPLIED PHYSICS LETTERS 89, 223509 (2006)

    17A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, J. Mater. Res. 7, 3260 _1992_.

    B. J. Choi, D. S. Jeong, and S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, and C. S. Hwang, K. Szot and R. Waser, B. Reichenberg, S. Tiedke Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition JOURNAL OF APPLIED PHYSICS 98, 033715 (2005)

    M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92,
    178302 (2004)

    Shunichi Kaeriyama, Member, IEEE, Toshitsugu Sakamoto, Hiroshi Sunamura, Masayuki Mizuno, Member, IEEE, Hisao Kawaura, Tsuyoshi Hasegawa, Kazuya Terabe, Tomonobu Nakayama, and Masakazu A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 1, JANUARY 2005

    下載圖示 校內:2013-07-02公開
    校外:2013-07-02公開
    QR CODE