簡易檢索 / 詳目顯示

研究生: 鄭聖賢
Cheng, Sheng-Hsien
論文名稱: 氧化鋅奈米線成長技術研究及特性探討
The Synthesizing Technology and Characteristics of ZnO Nanowires
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 76
中文關鍵詞: 氧化鋅奈米線
外文關鍵詞: Zinc Oxide, nanowire
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用管式高溫爐來成長氧化鋅奈米線於鍍金之矽基板上,在氧氣與氬氣氣氛下,藉由改變成長溫度、成長時間、成長壓力、氣體流量、氣體濃度、鍍金厚度等,探討這些變化對氧化鋅奈米線成長及特性之影響,進而找出最佳的成長條件。由VLS法成長之氧化鋅奈米線於高溫時,其成長關鍵為溫度的變化,但於低溫時,溫度雖然依舊對其成長有很大的影響,但必須再配合另一個關鍵的成長因素-壓力才能成長氧化鋅奈米線。經由X-ray、SEM、TEM、Raman、PL等儀器分析結果顯示,氧化鋅奈米線長度隨燒結的時間增加而增長,且氧化鋅奈米線直徑隨金之厚度增加而增加,在此實驗中成功以低溫350 oC成長奈米線及其最小直徑為20 nm。

      In this study, zinc oxide nanowires were synthesized on the Au/Si substrates. By reacting in tubular furnace at the oxygen and argon atmosphere, different gas concentrations, gas flow rates, growing time, growing temperatures, growing pressures and Au thickness were introduced to investigate the influences on the characteristics of zinc oxide nanowires. By means of the Raman spectra, Photoluminescence spectra, X-ray Diffraction pattern, scanning electron microscopy and transmission electron microscopy, the chemical and physical characteristics of zinc oxide nanowires were analyzed. In our experiments, when reacting at high temperature, the reacting temperature was the key factor of nanowires’ growth. And when reacting at low temperature, the furnace pressure became more important. The length of ZnO nanowires increases with the reacting time and the diameter of wires increases with the gold thickness as well.
      The lowest reacting temperature in this study was 350 ℃ and it exhibited the thin diameter as 20 nm.

    摘要………………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅲ 表目錄……………………………………………………………………Ⅵ 圖目錄……………………………………………………………………Ⅶ 第一章 緒論……………………………………………………………1 1-1 一維奈米材料的發展…………………………………………1 1-2 奈米線的特殊性質與應用……………………………………2 1-2-1 光學性質與其應用……………………………………………2 1-2-2 電學性質與其應用……………………………………………3 第二章 原理……………………………………………………………7 2-1 奈米材料特性…………………………………………………7 2-2 半導體…………………………………………………………12 2-3 能階、能帶與能隙……………………………………………14 2-4 半導體奈米晶體量子限域效應………………………………16 2-5 半導體奈米晶體特性的轉變…………………………………20 2-6 氧化鋅奈米線的特殊性質……………………………………21 2-7 常見氧化鋅奈米線成長機制…………………………………24 2-7-1 V L S(Vapor-Liquid-Solid)法…………………………24 2-7-2 化學氣相沉積(CVD)法……………………………………25 2-7-3 鋅蒸氣氧化(the oxidation of zinc vapor)法………26 2-7-4 電泳沉積 (electrophoretic deposition)法…………26 第三章 實驗方法及步驟………………………………………………27 3-1 實驗流程………………………………………………………27 3-2 基板清洗………………………………………………………27 3-3 鍍金基板之製備………………………………………………28 3-4 成長氧化鋅奈米線……………………………………………28 3-5 試片分析………………………………………………………30 3-5-1 顯微分析………………………………………………………30 3-5-2 結構分析………………………………………………………34 3-5-3 成份分析………………………………………………………36 3-5-4 光學分析………………………………………………………36 第四章 實驗結果與討論………………………………………………38 4-1 影響奈米線成長因素…………………………………………38 4-1-1 氣體流量大小…………………………………………………38 4-1-2 成長溫度………………………………………………………41 4-1-3 成長時間………………………………………………………47 4-1-4 鍍金厚度………………………………………………………51 4-1-5 成長壓力………………………………………………………53 4-2 氧化鋅奈米線分析……………………………………………55 4-2-1 TEM 分析………………………………………………………55 4-2-2 XRD 分析………………………………………………………56 4-2-3 PL與PLE 分析…………………………………………………60 4-2-4 Raman 分析……………………………………………………62 4-2-5 形態分析………………………………………………………65 4-3 掺雜錳及其他形狀之氧化鋅奈米線…………………………66 4-3-1 掺雜錳之氧化鋅奈米線………………………………………66 4-3-2 其他形狀之氧化鋅奈米線……………………………………68 第五章 總結與未來工作發展…………………………………………70 參考文獻 …………………………………………………………………72

    1. Kubo, J.Phys.Soc.Japan, 17, 975, 1962

    2. Iijima, Helical mirobubules of graphitic carbon,
    Nature, 354, 56, 1991

    3. R. A. Swalin, Thermodynamics of Solids, 335, 863, 1998

    4. W. Tjhen, Electrical and optical properties of RF sputtered zinc
    oxide films, Splications of Ferroelectric , IEEE 7th International Symposium,
    710, 1991

    5. K. Hiruma et al., J. Appl. Phys., 77(2), 447, 1995

    6. Y. Li et al., Appl. Phys. Lett., 76(15), 2011, 2000

    7. J. Hu et al., Acc. Chem. Res., 32, 435, 1999

    8. S. R. Morrison, Selectivity in Semiconductor gas sensor, Sensors
    and Actuators, 12, 425, 1987

    9. J. C Anderson, Thin film transducers and sensors, Journal of
    Vacuum Science Technology, A4(3), 610-616, 1986

    10. U. Lampe, Thin-film ZnO properties and application, Ceramics
    Bulletin, 69(12), 1959, 1990

    11. Michael H. Hwang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science,
    292, 1897, 2001

    12. Y. W. Wang, Catalytic growth of semiconducting zinc oxide nanowires and their
    photoluminescence properties, Journal of Crystal Growth , 234, 171, 2002

    13. Peidong Yang, Controlled Growth of ZnO Nanowires and Their Optical
    Properties, Advanced Functional Materials, 12(5), 323, 2002

    14. Seung Chul Lyu, Low temperature growth and photoluminescence of well-aligned
    zinc oxide nanowires, Chemical Physics Letters, 363, 134, 2002

    15. Seu Yi Li, Copper-catalyzed ZnO nanowires on silicon (100) grown by
    vapor-liquid-solid process, Journal of Crystal Growth, 247, 357, 2003

    16. Minoru Satoh, Epitaxial growth of zinc oxide whiskers by chemical–vapor
    deposition under atmospheric pressure, Japanese of Applied Physics, 38, 586,
    1999

    17. Jih-Jen Wu, Catalyst-Free Growth and characterization of ZnO Nanorods,
    Journal of Physics Chemistry B, 106, 9546, 2002

    18. Zuowan Zhou, A new method for preparation of zinc oxide whiskers, Materials
    Research Bulletin, 34, 1563, 1999

    19. Zuowan Zhou, Tetropod-shaped ZnO whisker and its composites, Journal of
    Materials Procession Technology, 89-90, 415, 1999

    20. W. J. Li, Growth mechanism and growth habit of oxide crystals, Journal of
    Crystal Growth, 203, 186, 1999

    21. Lionel Vayssieres, Three-dimensional array of highly oriented crystalline
    ZnO microtubes, Chemistry of Materials, 13, 4395, 2001

    22. J. Q. Hu, Synthesis of uniform hexagonal prismatic ZnO whiskers, 14, 1216,
    2002

    23. M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc
    oxide nanowire arrays by one-step electrochemical deposition technique,
    Chemical Physical Letters, 363, 123, 2002

    24. Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic
    deposition, Electrochemical and Solid-State Letters, 5, 53, 2002

    25. T. Yoshida, Scanning tunneling microscopy using a ZnO whisker tip, Applied
    Physical Letters, 64, 3243, 1994

    26. C. Pieralli, New optical Probe using ZnO whiskers : analyses of
    sub-wavelength dithering and evanescent wave propagation, Applied Physics A,
    66, 377, 1998

    27. B. J. Jin, Effects of native defects on optical and electrical properties of
    ZnO prepared by pulsed laser deposition, Materials Science and Engineering B,
    71, 301, 2000

    28. Lauren E. Shea, Low-voltage cathodoluminescent phosphor, The Electrochemical
    Society Interface, Summer, 1998

    29. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang,
    Adv. Mater. 13, 113, 2000

    30. Z.W. Pan, Z.R. Dai, and Z.L. Wang, 291, 1947, 2001

    31. W.I. Park, D.H. Kim, S-W. Jung, and G-C. Yi, Appl. Phys. Lett. 80, 4232, 2002

    32. J.J. Wu and S-C. Liu, Adv. Mater. 14, 215, 2002

    33. S.C. Lyu, Y. Zhang, H. Ruh, H-J. Lee, H-W. Shim, E-K. Suh, and C.J. Lee,
    Chem. Phys. Lett. 363, 134, 2002

    34. H. Fores and C. Suryanarayana, J.O.M, June, p.12, 1989

    35. R. Birringen, Materials Science and Engineering, 117, 33, 1989

    36. R. P. Andres, R. S. Arerback, et al., J. Mater. Res., 4(3), May/June, 704
    ,1989

    37. Ron Dagani, "Nanostructured Materials Promise to Advance Range of
    Technologies", C&EN, Nov. 23, 1992

    38. B. H. Kear, Navel Research Review, pp. 4, 1994

    39. 道行發行,"從日本科學技術廳「今後三十年技術預測報告」看日本未來的技術發展與經
    濟社會",參考資料編號: RSR-77-01, 1988, P. 37,科學技術資料中心,台北

    40. 蘇品書編譯-超微粒子材料技術-復漢出版社印行, 台南1989

    41. 李俊青”中正大學化學研究所碩士論文”

    42. Yiying Wu, Peidong Yang, " Direct Observation of
    Vapor-liquid-Solid Nanowire Growth. " 2000

    43. 陳貴賢,吳季珍,物理雙月刊23卷6期

    44. Brus, L. E., J. Phys.Chem., 1996, 90, 2555

    45. A. P., Science, 271, 933, 1996

    46. Wang, Y, Herron, N., J. Phys. Chem. 95, 525, 1991

    47. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E., Annu. Rev. Phys.
    Chem., 41, 477, 1990

    48. 趙之堯,圓柱型硫化鎘奈米晶體的合成,碩士論文,台灣,1999

    49. Tolbert, S. H.; Alivisatos, A. P., Science, 265, 373, 1994

    50. Tolbert, S. H.; Alivisatos, A. P., Annu. Rev. Phys. Chem.,
    46, 595, 1995

    51. Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P.,
    Science, 276, 398, 1997

    52. M. L. Steigerwald, L. E. Brus, Acc. Chem. Res. 23, 183, 1990

    53. A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475, 2000

    54. X. F. Duan, C. M. Lieber, Nature 409, 66, 2001

    55. W. U. Huynh et al., Science 295, 2425, 2002

    56. J. F. Wang et al., Science 293, 1455, 2001

    57. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E.Weber, R.
    Russo, P. D. Yang, Scenice 292, 1897, 2001

    58. P. D. Yang et al., Adv. Funct. Mater. 12, 323, 2002

    59. T. Rueckes et al., Science 289, 94, 2000

    60. J. T. Hu et al., Acc. Chem. Res. 32, 435, 1999

    61. Y. Cui, C. M Lieber, Nature 291, 851, 2001

    62. Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic
    deposition, Electrochemical and Solid-State letters, 5, 53, 2002

    下載圖示 校內:2006-07-12公開
    校外:2007-07-12公開
    QR CODE