| 研究生: |
鄭聖賢 Cheng, Sheng-Hsien |
|---|---|
| 論文名稱: |
氧化鋅奈米線成長技術研究及特性探討 The Synthesizing Technology and Characteristics of ZnO Nanowires |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 氧化鋅 、奈米線 |
| 外文關鍵詞: | Zinc Oxide, nanowire |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用管式高溫爐來成長氧化鋅奈米線於鍍金之矽基板上,在氧氣與氬氣氣氛下,藉由改變成長溫度、成長時間、成長壓力、氣體流量、氣體濃度、鍍金厚度等,探討這些變化對氧化鋅奈米線成長及特性之影響,進而找出最佳的成長條件。由VLS法成長之氧化鋅奈米線於高溫時,其成長關鍵為溫度的變化,但於低溫時,溫度雖然依舊對其成長有很大的影響,但必須再配合另一個關鍵的成長因素-壓力才能成長氧化鋅奈米線。經由X-ray、SEM、TEM、Raman、PL等儀器分析結果顯示,氧化鋅奈米線長度隨燒結的時間增加而增長,且氧化鋅奈米線直徑隨金之厚度增加而增加,在此實驗中成功以低溫350 oC成長奈米線及其最小直徑為20 nm。
In this study, zinc oxide nanowires were synthesized on the Au/Si substrates. By reacting in tubular furnace at the oxygen and argon atmosphere, different gas concentrations, gas flow rates, growing time, growing temperatures, growing pressures and Au thickness were introduced to investigate the influences on the characteristics of zinc oxide nanowires. By means of the Raman spectra, Photoluminescence spectra, X-ray Diffraction pattern, scanning electron microscopy and transmission electron microscopy, the chemical and physical characteristics of zinc oxide nanowires were analyzed. In our experiments, when reacting at high temperature, the reacting temperature was the key factor of nanowires’ growth. And when reacting at low temperature, the furnace pressure became more important. The length of ZnO nanowires increases with the reacting time and the diameter of wires increases with the gold thickness as well.
The lowest reacting temperature in this study was 350 ℃ and it exhibited the thin diameter as 20 nm.
1. Kubo, J.Phys.Soc.Japan, 17, 975, 1962
2. Iijima, Helical mirobubules of graphitic carbon,
Nature, 354, 56, 1991
3. R. A. Swalin, Thermodynamics of Solids, 335, 863, 1998
4. W. Tjhen, Electrical and optical properties of RF sputtered zinc
oxide films, Splications of Ferroelectric , IEEE 7th International Symposium,
710, 1991
5. K. Hiruma et al., J. Appl. Phys., 77(2), 447, 1995
6. Y. Li et al., Appl. Phys. Lett., 76(15), 2011, 2000
7. J. Hu et al., Acc. Chem. Res., 32, 435, 1999
8. S. R. Morrison, Selectivity in Semiconductor gas sensor, Sensors
and Actuators, 12, 425, 1987
9. J. C Anderson, Thin film transducers and sensors, Journal of
Vacuum Science Technology, A4(3), 610-616, 1986
10. U. Lampe, Thin-film ZnO properties and application, Ceramics
Bulletin, 69(12), 1959, 1990
11. Michael H. Hwang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science,
292, 1897, 2001
12. Y. W. Wang, Catalytic growth of semiconducting zinc oxide nanowires and their
photoluminescence properties, Journal of Crystal Growth , 234, 171, 2002
13. Peidong Yang, Controlled Growth of ZnO Nanowires and Their Optical
Properties, Advanced Functional Materials, 12(5), 323, 2002
14. Seung Chul Lyu, Low temperature growth and photoluminescence of well-aligned
zinc oxide nanowires, Chemical Physics Letters, 363, 134, 2002
15. Seu Yi Li, Copper-catalyzed ZnO nanowires on silicon (100) grown by
vapor-liquid-solid process, Journal of Crystal Growth, 247, 357, 2003
16. Minoru Satoh, Epitaxial growth of zinc oxide whiskers by chemical–vapor
deposition under atmospheric pressure, Japanese of Applied Physics, 38, 586,
1999
17. Jih-Jen Wu, Catalyst-Free Growth and characterization of ZnO Nanorods,
Journal of Physics Chemistry B, 106, 9546, 2002
18. Zuowan Zhou, A new method for preparation of zinc oxide whiskers, Materials
Research Bulletin, 34, 1563, 1999
19. Zuowan Zhou, Tetropod-shaped ZnO whisker and its composites, Journal of
Materials Procession Technology, 89-90, 415, 1999
20. W. J. Li, Growth mechanism and growth habit of oxide crystals, Journal of
Crystal Growth, 203, 186, 1999
21. Lionel Vayssieres, Three-dimensional array of highly oriented crystalline
ZnO microtubes, Chemistry of Materials, 13, 4395, 2001
22. J. Q. Hu, Synthesis of uniform hexagonal prismatic ZnO whiskers, 14, 1216,
2002
23. M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc
oxide nanowire arrays by one-step electrochemical deposition technique,
Chemical Physical Letters, 363, 123, 2002
24. Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic
deposition, Electrochemical and Solid-State Letters, 5, 53, 2002
25. T. Yoshida, Scanning tunneling microscopy using a ZnO whisker tip, Applied
Physical Letters, 64, 3243, 1994
26. C. Pieralli, New optical Probe using ZnO whiskers : analyses of
sub-wavelength dithering and evanescent wave propagation, Applied Physics A,
66, 377, 1998
27. B. J. Jin, Effects of native defects on optical and electrical properties of
ZnO prepared by pulsed laser deposition, Materials Science and Engineering B,
71, 301, 2000
28. Lauren E. Shea, Low-voltage cathodoluminescent phosphor, The Electrochemical
Society Interface, Summer, 1998
29. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang,
Adv. Mater. 13, 113, 2000
30. Z.W. Pan, Z.R. Dai, and Z.L. Wang, 291, 1947, 2001
31. W.I. Park, D.H. Kim, S-W. Jung, and G-C. Yi, Appl. Phys. Lett. 80, 4232, 2002
32. J.J. Wu and S-C. Liu, Adv. Mater. 14, 215, 2002
33. S.C. Lyu, Y. Zhang, H. Ruh, H-J. Lee, H-W. Shim, E-K. Suh, and C.J. Lee,
Chem. Phys. Lett. 363, 134, 2002
34. H. Fores and C. Suryanarayana, J.O.M, June, p.12, 1989
35. R. Birringen, Materials Science and Engineering, 117, 33, 1989
36. R. P. Andres, R. S. Arerback, et al., J. Mater. Res., 4(3), May/June, 704
,1989
37. Ron Dagani, "Nanostructured Materials Promise to Advance Range of
Technologies", C&EN, Nov. 23, 1992
38. B. H. Kear, Navel Research Review, pp. 4, 1994
39. 道行發行,"從日本科學技術廳「今後三十年技術預測報告」看日本未來的技術發展與經
濟社會",參考資料編號: RSR-77-01, 1988, P. 37,科學技術資料中心,台北
40. 蘇品書編譯-超微粒子材料技術-復漢出版社印行, 台南1989
41. 李俊青”中正大學化學研究所碩士論文”
42. Yiying Wu, Peidong Yang, " Direct Observation of
Vapor-liquid-Solid Nanowire Growth. " 2000
43. 陳貴賢,吳季珍,物理雙月刊23卷6期
44. Brus, L. E., J. Phys.Chem., 1996, 90, 2555
45. A. P., Science, 271, 933, 1996
46. Wang, Y, Herron, N., J. Phys. Chem. 95, 525, 1991
47. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E., Annu. Rev. Phys.
Chem., 41, 477, 1990
48. 趙之堯,圓柱型硫化鎘奈米晶體的合成,碩士論文,台灣,1999
49. Tolbert, S. H.; Alivisatos, A. P., Science, 265, 373, 1994
50. Tolbert, S. H.; Alivisatos, A. P., Annu. Rev. Phys. Chem.,
46, 595, 1995
51. Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P.,
Science, 276, 398, 1997
52. M. L. Steigerwald, L. E. Brus, Acc. Chem. Res. 23, 183, 1990
53. A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475, 2000
54. X. F. Duan, C. M. Lieber, Nature 409, 66, 2001
55. W. U. Huynh et al., Science 295, 2425, 2002
56. J. F. Wang et al., Science 293, 1455, 2001
57. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E.Weber, R.
Russo, P. D. Yang, Scenice 292, 1897, 2001
58. P. D. Yang et al., Adv. Funct. Mater. 12, 323, 2002
59. T. Rueckes et al., Science 289, 94, 2000
60. J. T. Hu et al., Acc. Chem. Res. 32, 435, 1999
61. Y. Cui, C. M Lieber, Nature 291, 851, 2001
62. Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic
deposition, Electrochemical and Solid-State letters, 5, 53, 2002