簡易檢索 / 詳目顯示

研究生: 黃健恩
Huang, Chien-En
論文名稱: 小型風機於邊界層風洞之尾流量測與特性分析
Analysis and Measurements of Wakes from Multi-blade Turbines in a Boundary-Layer Wind Tunnel
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 84
中文關鍵詞: 葉片元素理論眼鏡蛇探針風速計水平軸風機風洞實驗紊流邊界層風洞風機尾流
外文關鍵詞: Blade element momentum theory, Cobra probe anemometer, Horizontal-axis wind turbine, Wind-tunnel experiment, Turbulent boundary-layer wind tunnel, Wind-turbine wake
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究主要是利用眼鏡蛇探針(Cobra probe)針對本實驗室所設計的二、三、四葉縮尺風機擺設在紊流邊界層風洞內(在輪轂高度的來流風速為6.8m s^(-1)紊流強度為10%)來做尾流逐點量測,透過分析平均風速分布、紊流強度、動量通量等氣動力特性來了解尾流的結構。在這次的實驗中主要分為下列兩種狀況來進行: (1)風機在偏航角-20°、+20°及0°狀況下運作時量測其水平剖面(上視圖),分析風機尾流的發展狀況。(2)風機在邊界層內針對其垂直剖面量測(側視圖)並分析尾流在邊界層內發展狀況。除了風洞實驗外,本研究利用葉片元素理論(BEM theory)預測在風機近尾流區內的風速分布並且與紊流(本次實驗)及均勻(資料取自呂紹棟(2017) [1])入流條件下風機下游X/D=1處的風洞實驗量測結果做比較。
    根據實驗結果指出尾流區內的風速會有明顯的降低且在葉片尖端處紊流會有大量的增強,但這趨勢會隨著與風機的距離增加而逐漸的恢復,由於風機會從來流中吸取大量的風能導致尾流區內動量遠低於周圍的流場,故動量皆會往尾流區內遞補。而當風機在有偏航角的狀況下運轉時,尾流的分布會偏向一邊。而這些尾流統計結果的趨勢會隨著葉片數目的增加而有明顯的增強。此外可發現能量頻譜圖的結果會非常接近斜率為-5/3的慣性區間(Inertial subrange)。
    從葉片元素理論所預估出來的風速值與紊流及均勻入流條件下風機下游X/D=1處的風洞實驗量測的比較結果可得知在1D位置時,均勻入流的狀況下結果與葉片元素理論的質較為相近,說明紊流入流狀況下損失的風速有恢復較快的現象,而葉片元素理論可以用來預測大約的近尾流區風速值。

    An experiment was carried out to study complex turbulence in the wakes originated from stand-alone 2, 3 and 4-blade wind turbines placed in the turbulent boundary-layer wind tunnel (turbulence intensity of 10% at the hub height) with two conditions:(1) the measurements in the vertical plane, and (2) the measurements in the horizontal plane when the turbine works in +20°,-20° and 0° yaw angle conditions. The calibration-free Cobra Probe was used to measure the three instantaneous velocity components in the wakes from the stand-alone turbine. Turbulence key statistics are analyzed and presented, including time-averaged velocity, turbulence intensity, momentum flux, and power spectrum. Besides, we use the BEM theory to predict the streamwise wind velocity to compare with the results of the measurements at the downwind position X/D=1 in the turbulence (the data obtained from this experiment) and uniform incoming flow (the data duplicate from the reference, Lyu (2017)[1]).
    The results of the measurements indicate that the distribution of time-averaged velocity declines immediately downstream of the turbine models and then recovers with the wake-wise direction. The turbulence intensity has a strong enhancement at the tip-levels in the near-wake region. Momentum flux demonstrates how the kinetic energy of the flow is transported to recover the velocity deficit in the wakes. In particular, the wakes of the statistics are deflected to the side when the turbine works in a yaw angle condition, and the maximum of the key turbulence statistics are in the four-blade turbine case. The plots of the energy spectrum from the results are close to the inertial subrange with a global slope of -5/3 to confirm further the measured device is reliable.
    The comparisons of the prediction from the BEM theory and the measurements in the turbulence and uniform inflow conditions demonstrate that the wind velocity deficit recovers faster in the turbulence case because of the turbulence mixing, and the BEM theory can be used to predict the approximate value of the wind velocity in the near wake.

    中文摘要 I ABSTRACT III 致謝 V CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XIV CHAPTER 1 INTRODUCTION 1 1-1 Literature Reviews 3 1-2 Motivation and Objectives 10 1-3 Content of Research 11 CHAPTER 2 EXPERIMENTAL EQUIPMENT AND SETUPS 12 2-1 Boundary-layer Wind Tunnel 13 2-2 Miniature Wind Turbine Models 14 2-3 Calibration-free Cobra Probe 17 2-4 Laser tachometer 20 2-5 Sampling Sensitivity Analysis 21 2-6 Experimental Setups 23 CHAPTER 3 THEORY AND ANALYSES OF THE MOTOR 30 3-1 Blade Element Momentum Theory 30 3-2 Analysis between the Motor DCX-12 L and the Blades 35 CHAPTER 4 RESULTS AND DISCUSSIONS 40 4-1 Experimental Results of the Wake Measurements 44 Case 1. The results in the horizontal plane (X-Y plane) with the different yaw angle conditions. 44 Case2. The results in the vertical plane (X-Z plane). 64 4-2 Prediction of the Wind Velocity in the Wake Based on the BEM Theory 75 CHAPTER 5 CONCLUSIONS 78 CHAPTER 6 FUTURE PERSPECTIVE 80 REFERENCES 81

    1. Lyu., S.-D. and Y.-T. Wu., Measurements of Multi-Blade Wind Turbine Wakes in an Open-Jet Wind Tunnel. 2017.
    2. Renewable 2017 globle status report.
    3. Global Wind 2016 Report,GWEC. 2017.
    4. Barthelmie, R.J., S.T. Frandsen, M.N. Nielsen, S.C. Pryor, P.E. Rethore, and H.E. Jørgensen, Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy, 2007. 10(6): p. 517-528.
    5. Barthelmie, R.J., S.T. Frandsen, O. Rathmann, K.S. Hansen, E.S. Politis, J. Prospathopoulos, D. Cabezón Martínez, K. Rados, S. Van Der Pijl, and J. Schepers, Flow and wakes in large wind farms in complex terrain and offshore. 2008.
    6. Hansen, K.S., R.J. Barthelmie, L.E. Jensen, and A. Sommer, The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy, 2012. 15(1): p. 183-196.
    7. Thomsen, K. and P. Sørensen, Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 1999. 80(1): p. 121-136.
    8. Vermeer, L.J., J.N. Sørensen, and A. Crespo, Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 2003. 39(6-7): p. 467-510.
    9. Krogstad, P.-Å. and M.S. Adaramola, Performance and near wake measurements of a model horizontal axis wind turbine. Wind Energy, 2012. 15(5): p. 743-756.
    10. Krogstad, P.-Å., L. Sætran, and M.S. Adaramola, “Blind Test 3” calculations of the performance and wake development behind two in-line and offset model wind turbines. Journal of Fluids and Structures, 2015. 52: p. 65-80.
    11. Wu, Y.-T. and F. Porté-Agel, Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies, 2012. 5(12): p. 5340-5362.
    12. MacLeod, A., S. Barnes, K. Rados, and I. Bryden. Wake effects in tidal current turbine farms. in International conference on marine renewable energy-conference proceedings. 2002.
    13. Sanderse, B., Aerodynamics of wind turbine wakes. Energy Research Center of the Netherlands (ECN), ECN-E–09-016, Petten, The Netherlands, Tech. Rep, 2009. 5(15): p. 153.
    14. Schümann, H., F. Pierella, and L. Sætran, Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel. Energy Procedia, 2013. 35: p. 285-296.
    15. Medici, D. and P.H. Alfredsson, Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy, 2006. 9(3): p. 219-236.
    16. Zhang, W., C.D. Markfort, and F. Porté-Agel, Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer. Experiments in Fluids, 2011. 52(5): p. 1219-1235.
    17. Jimenez, A., A. Crespo, E. Migoya, and J. Garcia, Advances in large-eddy simulation of a wind turbine wake. Journal of Physics: Conference Series, 2007. 75: p. 012041.
    18. Whale, J., C. Anderson, R. Bareiss, and S. Wagner, An experimental and numerical study of the vortex structure in the wake of a wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2000. 84(1): p. 1-21.
    19. Massouh, F. and I. Dobrev, Exploration of the vortex wake behind of wind turbine rotor. Journal of Physics: Conference Series, 2007. 75: p. 012036.
    20. Chamorro, L.P. and F. Porté-Agel, A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects. Boundary-Layer Meteorology, 2009. 132(1): p. 129-149.
    21. Chamorro, L.P. and F. Porté-Agel, Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study. Boundary-Layer Meteorology, 2010. 136(3): p. 515-533.
    22. Chamorro, L.P., R.E.A. Arndt, and F. Sotiropoulos, Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy, 2012. 15(5): p. 733-742.
    23. Iungo, G.V., Y.-T. Wu, and F. Porté-Agel, Field Measurements of Wind Turbine Wakes with Lidars. Journal of Atmospheric and Oceanic Technology, 2013. 30(2): p. 274-287.
    24. Rhodes, M.E. and J.K. Lundquist, The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar. Boundary-Layer Meteorology, 2013. 149(1): p. 85-103.
    25. Zhang, W., C.D. Markfort, and F. Porté-Agel, Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study. Boundary-Layer Meteorology, 2012. 146(2): p. 161-179.
    26. Chamorro, L.P., N. Tobin, R.E.A. Arndt, and F. Sotiropoulos, Variable-sized wind turbines are a possibility for wind farm optimization. Wind Energy, 2014. 17(10): p. 1483-1494.
    27. Markfort, C.D., W. Zhang, and F. Porté-Agel, Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence, 2012. 13: p. N33.
    28. Crespo, A., et al., J. Hernandez, E. Fraga, and C. Andreu, Experimental validation of the UPM computer code to calculate wind turbine wakes and comparison with other models. Journal of Wind Engineering and Industrial Aerodynamics, 1988. 27(1-3): p. 77-88.
    29. Crespo, A., J. Hernandez, and S. Frandsen, Survey of modelling methods for wind turbine wakes and wind farms. Wind energy, 1999. 2(1): p. 1-24.
    30. Prospathopoulos, J.M., E.S. Politis, K.G. Rados, and P.K. Chaviaropoulos, Evaluation of the effects of turbulence model enhancements on wind turbine wake predictions. Wind Energy, 2011. 14(2): p. 285-300.
    31. Jiménez, Á., A. Crespo, and E. Migoya, Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy, 2009. 13(6): p. 559-572.
    32. Luo, K., R. Yuan, X. Dong, J. Wang, S. Zhang, J. Fan, M. Ni, and K. Cen, Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a two-bladed wind turbine. Science China Technological Sciences, 2017.
    33. Lignarolo, L.E.M., D. Mehta, R.J.A.M. Stevens, A.E. Yilmaz, G. van Kuik, S.J. Andersen, C. Meneveau, C.J. Ferreira, D. Ragni, J. Meyers, G.J.W. van Bussel, and J. Holierhoek, Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine. Renewable Energy, 2016. 94: p. 510-523.
    34. Sedaghatizadeh, N., M. Arjomandi, R. Kelso, B. Cazzolato, and M.H. Ghayesh, Modelling of wind turbine wake using large eddy simulation. Renewable Energy, 2017. 115: p. 1166-1176.
    35. Coudou, N., S. Buckingham, L. Bricteux, and J. van Beeck, Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2017. 167(1): p. 77-98.
    36. Ragheb, M. and A.M. Ragheb, Wind turbines theory-the betz equation and optimal rotor tip speed ratio, in Fundamental and advanced topics in wind power. 2011, InTech.
    37. Troldborg, N., J.N. Sorensen, and R. Mikkelsen, Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy, 2010. 13(1): p. 86-99.
    38. Hu, H., Z. Yang, and P. Sarkar, Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind. Experiments in Fluids, 2011. 52(5): p. 1277-1294.
    39. Adaramola, M.S. and P.Å. Krogstad, Experimental investigation of wake effects on wind turbine performance. Renewable Energy, 2011. 36(8): p. 2078-2086.
    40. Porté-Agel, F., Y.-T. Wu, and C.-H. Chen, A Numerical Study of the Effects ofWind Direction on Turbine Wakes and Power Losses in a LargeWind Farm. Energies, 2013. 6(10): p. 5297-5313.
    41. Bastankhah, M. and F. Porté-Agel, Experimental and theoretical study of wind turbine wakes in yawed conditions. Journal of Fluid Mechanics, 2016. 806: p. 506-541.
    42. Schottler, J., J. Bartl, F. Mühle, L. Sætran, J. Peinke, and M. Hölling, Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width. Wind Energy Science, 2018. 3(1): p. 257-273.
    43. Chu, C.-R. and P.-H. Chiang, Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2014. 124: p. 82-89.
    44. Petersen, E.L., N.G. Mortensen, L. Landberg, J. Højstrup, and H.P. Frank, Wind power meteorology. Risø National Laboratory, Roskilde, Denmark, Technical Document No. Risø-I-1206 (EN), 1997.
    45. Burton, T., N. Jenkins, D. Sharpe, and E. Bossanyi, Wind energy handbook. 2011: John Wiley & Sons.
    46. Bianchi, F.D., R.J. Mantz, and H. De Battista, The wind and wind turbines. 2007: Springer.
    47. Schubel, P.J. and R.J. Crossley, Wind Turbine Blade Design. Energies, 2012. 5(12): p. 3425-3449.
    48. Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. 2010: John Wiley & Sons.
    49. motor, M., Motor-DCX-12 L.
    50. Instrumentation, T.F., Catalogue-section-Cobra-Probe.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE