簡易檢索 / 詳目顯示

研究生: 施家絨
Shih, Chia-Jung
論文名稱: 射頻濺鍍法製備應用於電阻式記憶體之氧化鈮薄膜
RF Sputter Deposition of NbOx Thin Films for RRAM Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 112
中文關鍵詞: 射頻濺鍍法氧化鈮薄膜電阻轉換特性電阻式記憶體
外文關鍵詞: RF Sputter, niobium oxide, RRAM, thin films
相關次數: 點閱:89下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以射頻濺鍍法在ITO玻璃基板上濺鍍氧化鈮薄膜。根據XRD顯示氧化鈮薄膜皆為非晶性(Amorphous)。第一部分探討氧化鈮薄膜不同退火溫度之電阻轉換特性,並製成ITO/NbOx/Al(MIM)元件作為記憶單元。在退火300/400/500°C觀察到單極性電阻轉換,且隨退火溫度增加,電阻轉換表現更好。第二部分則以不同氧化鈮薄膜厚度量測ITO/NbOx/Al之電性。在一定厚度(25/50nm)下,才能觀察到單極性電阻轉換, ITO/NbOx(50nm)/Al轉換次數18次且RON/ROFF達104,ITO/ NbOx (25nm)/Al轉換次數達33次且RON/ROFF達105,藉由漏電流機制分析,高阻態皆由SCLC主導,低阻態由歐姆傳導機制主導。為了更了解內部電阻轉換的形式,以XPS縱深分析,結果顯示轉換機制應是由氧空缺所控制,並在NbOx/Al的接面處產生interfacial layer,推測其為電阻轉換發生的位置。第三部分為改變上電極材料,以Ti和複合電極Ti/Pt取代Al電極,ITO/ NbOx/Ti電阻轉換特性不明顯,而ITO/ NbOx/Ti/Pt觀察到雙極性電阻轉換,轉換次數22次且RON/ROFF約為104。高阻態IISchottky主導,低阻態由歐姆機制主導,說明複合電極可調變功函數並改善電阻轉換特性。

    In this work, we fabricated niobium oxide thin films in metal-insulator-metal stacks. The niobium oxides and the top electrodes were deposited on ITO by RF sputtering and e-beam respectively. We successfully fabricated ITO/NbOx/Al MIM thin films with unipolar resistive switching. Through the analysis of XPS and fitting of conduction mechanism, we can further understand the resistive switching in our device. We assume that the conductive filaments can be mostly controlled by the oxygen vacancies. The effect of the thickness of NbOx will be discussed. Besides, we also change the top electrode to observe the resistive switching. Bi-layer Ti/Pt shows bipolar resistive switching and with better performance than Ti only. It could be related to the work function differences and bi-layer could alter the work function.

    目錄 中文摘要 ........................................................................................................... I 英文摘要…………………………………………………………………III 表目錄 .......................................................................................................... XIV 圖目錄 ........................................................................................................... XV 第一章 緒論 ...................................................................................................... 1 1.1前言 ............................................................................................................. 1 1.2研究動機 ..................................................................................................... 2 1.3 論文架構 ..................................................................................................... 3 第二章 文獻回顧 .............................................................................................. 4 2.1氧化鈮材料 ................................................................................................. 4 2.1.1氧化鈮基本介紹 .................................................................................. 4 2.1.2氧化鈮材料之選擇 .............................................................................. 4 2.2 非揮發性記憶體介紹 ................................................................................. 7 2.2.1鐵電記憶體 (FeRAM) ......................................................................... 7 2.2.2相變化記憶體 (PRAM) ....................................................................... 7 2.2.3磁阻式記憶體 (MRAM) ...................................................................... 8 2.2.4電阻式記憶體 (RRAM) ....................................................................... 8 XI 2.3電阻式隨機存取記憶體(RRAM) ............................................................ 11 2.4電阻轉換機制 ........................................................................................... 14 2.4.1燈絲理論(Conductive filament) ................................................... 14 2.4.2 界面導電機制 .................................................................................... 15 2.4.3離子遷移機制(Ion migration) ........................................................... 16 2.5漏電流傳導機制 ....................................................................................... 21 2.5.1穿隧(Tunneling) ................................................................................. 21 2.5.1.1 Fowler-Nordheim tunneling ........................................................ 21 2.5.1.2 Direct tunneling ........................................................................... 22 2.5.2蕭特基發射(Schottky Emission) ....................................................... 22 2.5.3空間電荷限制傳導(Space-Charge Limited Current,SCLC) .......... 23 2.5.4普爾-法蘭克發射(Poole-Frenkel Emission) ..................................... 24 2.5.5歐姆接觸(Ohmic Contact) ................................................................. 24 第三章 實驗步驟與方法 ................................................................................ 28 3.1實驗材料 ................................................................................................... 28 3.2 實驗設備 ................................................................................................... 28 3.2.1射頻磁控濺鍍系統 ............................................................................ 28 3.2.2 電子束蒸鍍機 .................................................................................... 29 3.2.3管式高溫爐 ........................................................................................ 29 3.3實驗流程 ................................................................................................... 30 3.4分析儀器 ................................................................................................... 33 3.4.1多功能X光薄膜繞射儀(GIAXRD) ................................................. 33 XII 3.4.2場發射掃描式電子顯微鏡(FE-SEM) ............................................... 34 3.4.3半導體參數分析儀(Semiconductor Device Analyzer Mainframe) .. 35 3.4.4化學分析電子光譜儀(ESCA) ........................................................... 35 第四章 結果與討論 ........................................................................................ 44 4.1氧化鈮薄膜之製備 ................................................................................... 44 4.1.1 SEM薄膜剖面分析 ........................................................................... 44 4.1.2薄膜晶相分析 .................................................................................... 44 4.2 不同退火溫度下ITO/NbOx/Al電阻轉換特性分析 .............................. 47 4.3不同薄膜厚度下ITO/NbOx/Al電阻轉換特性分析 .............................. 51 4.3.1 ITO/NbOx(50nm)/Al電阻轉換特性 ................................................. 51 4.3.1.1 ITO/未退火(As-dep) NbOx(50nm)/Al電阻轉換特性 ............... 51 4.3.1.2 NbOx在不同參數調變下ITO/ NbOx(50nm)/Al電阻轉換特性 ................................................................................................................. 53 4.3.2 ITO/NbOx(25nm)/Al電阻轉換特性 ................................................. 54 4.3.2.1 ITO/未退火(As-dep) NbOx(25nm)/Al電阻轉換特性 ............... 54 4.3.2.2 NbOx在不同參數調變下ITO/ NbOx(25nm)/Al電阻轉換特性 ................................................................................................................. 55 4.3.3綜合比較ITO/NbOx/Al 在不同厚度下 ............................................ 55 4.4不同上電極ITO/NbOx/Metal電阻轉換特性分析 ................................ 76 4.4.1ITO/NbOx/Ti ....................................................................................... 76 4.4.2ITO/NbOx/Ti/Pt ................................................................................... 77 4.4.3綜合比較ITO/NbOx/Metal ................................................................ 77 4.4.3.1比較 ITO/NbOx/Ti 和ITO/NbOx/Ti/Pt電阻轉換特性 ............. 77 XIII 4.4.3.2ITO/NbOx/M 不同上電極之結果比較 ....................................... 79 第五章 結論 .................................................................................................... 87 參考文獻 ......................................................................................................... 88

    參考文獻
    1. Kim, K.M., D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011. 22(25): p. 254002.
    2. Jeong, D.S., et al., Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys, 2012. 75(7): p. 076502.
    3. Jung, K., et al., Unipolar resistive switching in insulating niobium oxide film and probing electroforming induced metallic components. Journal of Applied Physics, 2011. 109(5): p. 054511.
    4. Hanzig, F., et al., Effect of the stoichiometry of niobium oxide on the resistive switching of Nb2O5 based metal–insulator–metal stacks. Journal of Electron Spectroscopy and Related Phenomena, 2015. 202: p. 122-127.
    5. Weibin, Z., et al., The investigation of NbO2and Nb2O5electronic structure by XPS, UPS and first principles methods. Surface and Interface Analysis, 2013. 45(8): p. 1206-1210.
    6. Chiang, K.K., J.S. Chen, and J.J. Wu, Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure. ACS Appl Mater Interfaces, 2012. 4(8): p. 4237-45.
    7. Lanza, M., A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope. Materials, 2014. 7(3): p. 2155-2182.
    8. Zhu, L., et al., An overview of materials issues in resistive random access memory. Journal of Materiomics, 2015. 1(4): p. 285-295.
    9. Delheusy, M., X-ray investigation of Nb/O interfaces. 2008.
    10. Wong, H.S.P., et al., Phase Change Memory. Proceedings of the IEEE, 2010. 98(12): p. 2201-2227.
    11. Wouters, D.J., R. Waser, and M. Wuttig, Phase-Change and Redox-Based Resistive Switching Memories. Proceedings of the Ieee, 2015. 103(8): p. 1274-1288.
    12. <Overview of emerging nonvolatile memory technologies.pdf>.
    13. Zhu, J.-G. and C. Park, Magnetic tunnel junctions. Materials Today, 2006. 9(11): p. 36-45.
    89
    14. Pan, F., et al., Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Materials Science and Engineering: R: Reports, 2014. 83: p. 1-59.
    15. Ielmini, D., Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semiconductor Science and Technology, 2016. 31(6): p. 063002.
    16. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28-36.
    17. Huang, Y., et al., CuO/ZnO memristors via oxygen or metal migration controlled by electrodes. AIP Advances, 2016. 6(2): p. 025018.
    18. Fortunato, E., P. Barquinha, and R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012. 24(22): p. 2945-86.
    19. Chiu, F.-C., A Review on Conduction Mechanisms in Dielectric Films. Advances in Materials Science and Engineering, 2014. 2014: p. 1-18.
    20. Lim, E. and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics, 2015. 4(3): p. 586-613.
    21. Blonkowski, S. and T. Cabout, Bipolar resistive switching from liquid helium to room temperature. Journal of Physics D-Applied Physics, 2015. 48(34): p. 14.
    22. Russo, U., et al., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Transactions on Electron Devices, 2009. 56(2): p. 186-192.
    23. Wu, X.J., et al., General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion. Semiconductor Science and Technology, 2015. 30(7): p. 6.
    24. Atashbar, M., et al., XPS study of Nb-doped oxygen sensing TiO 2 thin films prepared by sol-gel method. Thin Solid Films, 1998. 326(1): p. 238-244.
    25. Wang, X. and G. Shen, Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015. 15: p. 104-115.
    26. Özer, N., D.-G. Chen, and C.M. Lampert, Preparation and properties of spin-coated Nb 2 O 5 films by the sol-gel process for electrochromic applications. Thin Solid Films, 1996. 277(1): p. 162-168.
    90
    27. Shibagaki, S. and K. Fukushima, XPS analysis on Nb–SrTiO 3 thin films deposited with pulsed laser ablation technique. Journal of the European Ceramic Society, 1999. 19(6): p. 1423-1426.
    28. Karulkar, P.C., Study of thin Nb oxide films. Journal of Vacuum Science and Technology, 1980. 17(1): p. 462.
    29. Kowalski, K., et al. ‘In situ’XPS investigation of the baking effect on the surface oxide structure formed on niobium sheets used for superconducting RF cavity production. in Proc. of the 11th Workshop on RF Superconductivity, Travemünde, Germany. 2003.
    30. Arfaoui, I., et al., Evidence for a large enrichment of interstitial oxygen atoms in the nanometer-thick metal layer at the NbO/Nb (110) interface. Journal of Applied Physics, 2002. 91(11): p. 9319.
    31. Sanz, J. and S. Hofmann, Auger electron spectroscopy and X-ray photoelectron spectroscopy studies of the oxidation of polycrystalline tantalum and niobium at room temperature and low oxygen pressures. Journal of the Less Common Metals, 1983. 92(2): p. 317-327.
    32. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010. 257(3): p. 887-898.
    33. Kumar, P.M., S. Badrinarayanan, and M. Sastry, Nanocrystalline TiO 2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 2000. 358(1): p. 122-130.
    34. Babelon, P., et al., SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998. 322(1): p. 63-67.
    35. Alam, M. and D. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method. Journal of sol-gel science and technology, 2002. 25(2): p. 137-145.
    36. Sathish, M., et al., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of materials, 2005. 17(25): p. 6349-6353.
    37. Mayer, J., et al., Titanium and reduced titania overlayers on titanium dioxide (110). Journal of Electron Spectroscopy and Related Phenomena, 1995. 73(1): p. 1-11.
    38. Lao, S.X., R.M. Martin, and J.P. Chang, Plasma enhanced atomic layer deposition of HfO[sub 2] and ZrO[sub 2] high-k thin films. Journal of
    91
    Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(3): p. 488.
    39. Zanoni, R., et al., XPS analysis of sol‐gel processed doped and undoped TiO2 films for sensors. Surface and interface analysis, 1994. 22(1‐12): p. 376-379.
    40. Lin, C.-C., et al., Effect of non-lattice oxygen on ZrO 2-based resistive switching memory. Nanoscale research letters, 2012. 7(1): p. 1.
    41. Zhang, Y.-p., et al., Effect of ZnMn2O4 thickness on its resistive switching characteristics. Indian Journal of Engineering & Materials Sciences, 2014. 21: p. 563-566.
    42. Wang, M., et al. Study of One Dimension Thickness Scaling on Cu/HfOx/Pt Based RRAM Device Performance. in 2012 4th IEEE International Memory Workshop. 2012. IEEE.
    43. Pan, F., Experimental and Simulation Study of Resistive Switches for Memory Applications. 2012.
    44. Park, T.H., et al., Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell. Sci Rep, 2015. 5: p. 15965.
    45. Pang, H. and N. Deng, A Forming-Free Bipolar Resistive Switching in HfOx-Based Memory with a Thin Ti Cap. Chinese Physics Letters, 2014. 31(10): p. 107303.
    46. Lee, K.-J., et al., Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory. Materials, 2015. 8(10): p. 7191-7198.
    47. Jeon, I., et al. A novel methodology on tuning work function of metal gate using stacking bi-metal layers. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004. IEEE.
    48. Lin, C.-Y., et al., Effect of top electrode material on resistive switching properties of film memory devices. IEEE Electron Device Letters, 2007. 28(5): p. 366-368.

    下載圖示 校內:2022-01-11公開
    校外:2022-01-11公開
    QR CODE