研究生: |
施家絨 Shih, Chia-Jung |
---|---|
論文名稱: |
射頻濺鍍法製備應用於電阻式記憶體之氧化鈮薄膜 RF Sputter Deposition of NbOx Thin Films for RRAM Applications |
指導教授: |
黃正亮
Huang, Cheng-Liang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 射頻濺鍍法 、氧化鈮薄膜 、電阻轉換特性 、電阻式記憶體 |
外文關鍵詞: | RF Sputter, niobium oxide, RRAM, thin films |
相關次數: | 點閱:89 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以射頻濺鍍法在ITO玻璃基板上濺鍍氧化鈮薄膜。根據XRD顯示氧化鈮薄膜皆為非晶性(Amorphous)。第一部分探討氧化鈮薄膜不同退火溫度之電阻轉換特性,並製成ITO/NbOx/Al(MIM)元件作為記憶單元。在退火300/400/500°C觀察到單極性電阻轉換,且隨退火溫度增加,電阻轉換表現更好。第二部分則以不同氧化鈮薄膜厚度量測ITO/NbOx/Al之電性。在一定厚度(25/50nm)下,才能觀察到單極性電阻轉換, ITO/NbOx(50nm)/Al轉換次數18次且RON/ROFF達104,ITO/ NbOx (25nm)/Al轉換次數達33次且RON/ROFF達105,藉由漏電流機制分析,高阻態皆由SCLC主導,低阻態由歐姆傳導機制主導。為了更了解內部電阻轉換的形式,以XPS縱深分析,結果顯示轉換機制應是由氧空缺所控制,並在NbOx/Al的接面處產生interfacial layer,推測其為電阻轉換發生的位置。第三部分為改變上電極材料,以Ti和複合電極Ti/Pt取代Al電極,ITO/ NbOx/Ti電阻轉換特性不明顯,而ITO/ NbOx/Ti/Pt觀察到雙極性電阻轉換,轉換次數22次且RON/ROFF約為104。高阻態IISchottky主導,低阻態由歐姆機制主導,說明複合電極可調變功函數並改善電阻轉換特性。
In this work, we fabricated niobium oxide thin films in metal-insulator-metal stacks. The niobium oxides and the top electrodes were deposited on ITO by RF sputtering and e-beam respectively. We successfully fabricated ITO/NbOx/Al MIM thin films with unipolar resistive switching. Through the analysis of XPS and fitting of conduction mechanism, we can further understand the resistive switching in our device. We assume that the conductive filaments can be mostly controlled by the oxygen vacancies. The effect of the thickness of NbOx will be discussed. Besides, we also change the top electrode to observe the resistive switching. Bi-layer Ti/Pt shows bipolar resistive switching and with better performance than Ti only. It could be related to the work function differences and bi-layer could alter the work function.
參考文獻
1. Kim, K.M., D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011. 22(25): p. 254002.
2. Jeong, D.S., et al., Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys, 2012. 75(7): p. 076502.
3. Jung, K., et al., Unipolar resistive switching in insulating niobium oxide film and probing electroforming induced metallic components. Journal of Applied Physics, 2011. 109(5): p. 054511.
4. Hanzig, F., et al., Effect of the stoichiometry of niobium oxide on the resistive switching of Nb2O5 based metal–insulator–metal stacks. Journal of Electron Spectroscopy and Related Phenomena, 2015. 202: p. 122-127.
5. Weibin, Z., et al., The investigation of NbO2and Nb2O5electronic structure by XPS, UPS and first principles methods. Surface and Interface Analysis, 2013. 45(8): p. 1206-1210.
6. Chiang, K.K., J.S. Chen, and J.J. Wu, Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure. ACS Appl Mater Interfaces, 2012. 4(8): p. 4237-45.
7. Lanza, M., A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope. Materials, 2014. 7(3): p. 2155-2182.
8. Zhu, L., et al., An overview of materials issues in resistive random access memory. Journal of Materiomics, 2015. 1(4): p. 285-295.
9. Delheusy, M., X-ray investigation of Nb/O interfaces. 2008.
10. Wong, H.S.P., et al., Phase Change Memory. Proceedings of the IEEE, 2010. 98(12): p. 2201-2227.
11. Wouters, D.J., R. Waser, and M. Wuttig, Phase-Change and Redox-Based Resistive Switching Memories. Proceedings of the Ieee, 2015. 103(8): p. 1274-1288.
12. <Overview of emerging nonvolatile memory technologies.pdf>.
13. Zhu, J.-G. and C. Park, Magnetic tunnel junctions. Materials Today, 2006. 9(11): p. 36-45.
89
14. Pan, F., et al., Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Materials Science and Engineering: R: Reports, 2014. 83: p. 1-59.
15. Ielmini, D., Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semiconductor Science and Technology, 2016. 31(6): p. 063002.
16. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28-36.
17. Huang, Y., et al., CuO/ZnO memristors via oxygen or metal migration controlled by electrodes. AIP Advances, 2016. 6(2): p. 025018.
18. Fortunato, E., P. Barquinha, and R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012. 24(22): p. 2945-86.
19. Chiu, F.-C., A Review on Conduction Mechanisms in Dielectric Films. Advances in Materials Science and Engineering, 2014. 2014: p. 1-18.
20. Lim, E. and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics, 2015. 4(3): p. 586-613.
21. Blonkowski, S. and T. Cabout, Bipolar resistive switching from liquid helium to room temperature. Journal of Physics D-Applied Physics, 2015. 48(34): p. 14.
22. Russo, U., et al., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Transactions on Electron Devices, 2009. 56(2): p. 186-192.
23. Wu, X.J., et al., General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion. Semiconductor Science and Technology, 2015. 30(7): p. 6.
24. Atashbar, M., et al., XPS study of Nb-doped oxygen sensing TiO 2 thin films prepared by sol-gel method. Thin Solid Films, 1998. 326(1): p. 238-244.
25. Wang, X. and G. Shen, Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015. 15: p. 104-115.
26. Özer, N., D.-G. Chen, and C.M. Lampert, Preparation and properties of spin-coated Nb 2 O 5 films by the sol-gel process for electrochromic applications. Thin Solid Films, 1996. 277(1): p. 162-168.
90
27. Shibagaki, S. and K. Fukushima, XPS analysis on Nb–SrTiO 3 thin films deposited with pulsed laser ablation technique. Journal of the European Ceramic Society, 1999. 19(6): p. 1423-1426.
28. Karulkar, P.C., Study of thin Nb oxide films. Journal of Vacuum Science and Technology, 1980. 17(1): p. 462.
29. Kowalski, K., et al. ‘In situ’XPS investigation of the baking effect on the surface oxide structure formed on niobium sheets used for superconducting RF cavity production. in Proc. of the 11th Workshop on RF Superconductivity, Travemünde, Germany. 2003.
30. Arfaoui, I., et al., Evidence for a large enrichment of interstitial oxygen atoms in the nanometer-thick metal layer at the NbO/Nb (110) interface. Journal of Applied Physics, 2002. 91(11): p. 9319.
31. Sanz, J. and S. Hofmann, Auger electron spectroscopy and X-ray photoelectron spectroscopy studies of the oxidation of polycrystalline tantalum and niobium at room temperature and low oxygen pressures. Journal of the Less Common Metals, 1983. 92(2): p. 317-327.
32. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010. 257(3): p. 887-898.
33. Kumar, P.M., S. Badrinarayanan, and M. Sastry, Nanocrystalline TiO 2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 2000. 358(1): p. 122-130.
34. Babelon, P., et al., SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998. 322(1): p. 63-67.
35. Alam, M. and D. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method. Journal of sol-gel science and technology, 2002. 25(2): p. 137-145.
36. Sathish, M., et al., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of materials, 2005. 17(25): p. 6349-6353.
37. Mayer, J., et al., Titanium and reduced titania overlayers on titanium dioxide (110). Journal of Electron Spectroscopy and Related Phenomena, 1995. 73(1): p. 1-11.
38. Lao, S.X., R.M. Martin, and J.P. Chang, Plasma enhanced atomic layer deposition of HfO[sub 2] and ZrO[sub 2] high-k thin films. Journal of
91
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(3): p. 488.
39. Zanoni, R., et al., XPS analysis of sol‐gel processed doped and undoped TiO2 films for sensors. Surface and interface analysis, 1994. 22(1‐12): p. 376-379.
40. Lin, C.-C., et al., Effect of non-lattice oxygen on ZrO 2-based resistive switching memory. Nanoscale research letters, 2012. 7(1): p. 1.
41. Zhang, Y.-p., et al., Effect of ZnMn2O4 thickness on its resistive switching characteristics. Indian Journal of Engineering & Materials Sciences, 2014. 21: p. 563-566.
42. Wang, M., et al. Study of One Dimension Thickness Scaling on Cu/HfOx/Pt Based RRAM Device Performance. in 2012 4th IEEE International Memory Workshop. 2012. IEEE.
43. Pan, F., Experimental and Simulation Study of Resistive Switches for Memory Applications. 2012.
44. Park, T.H., et al., Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell. Sci Rep, 2015. 5: p. 15965.
45. Pang, H. and N. Deng, A Forming-Free Bipolar Resistive Switching in HfOx-Based Memory with a Thin Ti Cap. Chinese Physics Letters, 2014. 31(10): p. 107303.
46. Lee, K.-J., et al., Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory. Materials, 2015. 8(10): p. 7191-7198.
47. Jeon, I., et al. A novel methodology on tuning work function of metal gate using stacking bi-metal layers. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004. IEEE.
48. Lin, C.-Y., et al., Effect of top electrode material on resistive switching properties of film memory devices. IEEE Electron Device Letters, 2007. 28(5): p. 366-368.