簡易檢索 / 詳目顯示

研究生: 陳慧蓮
Chen, Huei-Lian
論文名稱: 氧化矽奈米管與鎳鈷硫化物奈米片陣列應用於鋰離子電池負極之研究
Fabrications of SiOx Nanotube and Nickel Cobalt Sulfide Based Nanosheet Arrays as Negative Electrodes for Lithium Ion Batteries
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 鋰離子電池負極無黏結劑電極氧化矽奈米管鎳鈷硫化物奈米片
外文關鍵詞: Lithium ion batteries, anode, binder-free electrode, SiOx, nanotube, NiCo2S4, nanosheet
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別於碳布與發泡鎳上製備無黏結劑之氧化矽奈米管陣列與鎳鈷硫化物奈米片陣列電極,並探討其作為鋰離子電池負極之電化學特性。第一部分先利用化學浴法於碳布上成長氧化鋅奈米線陣列模板,繼以兩步驟溶膠凝膠法沉積氧化矽層於氧化鋅奈米線表面後,再以鹽酸水溶液去除氧化鋅奈米線,成功製備出氧化矽奈米管陣列,並應用於鋰離子電池之無黏結劑負極。由穿透式電子顯微鏡(TEM)分析得知,氧化矽奈米管之管壁厚度為 11 nm,而由TEM-EDS分析得知其矽氧比約為36:64。氧化矽奈米管陣列在200 mA/g的充放電速率下,具有1782 mAh/g之起始放電電容量,其起始庫倫效率可達91.1%。經200次循環後仍有1472 mAh/g的可逆放電電容量,電容量維持率為82.6%。而在2000 mA/g的充放電速率下,具有1457 mAh/g之起始放電電容量,其起始庫倫效率可達90.7%。經200次循環後仍有621 mAh/g的可逆放電電容量,電容量維持率為42.6%。由TEM分析經2000 mA/g下充放電循環400次後之電極,得知充放電循環造成之體積變化會使氧化矽奈米管之內徑變小,外徑增大,管壁厚度增加至16 nm,但仍可維持中空管狀結構,顯示經充放電循環後之電極結構並無崩解。本研究第二部份,則是利用化學浴法於發泡鎳上成長鎳鈷硫化物奈米片陣列,並應用於鋰離子電池之無黏結劑負極。由拉曼圖譜及X光繞射圖譜分析得知此奈米片陣列同時有鎳鈷硫化合物及鎳硫化合物存在,而由X光光電子能譜可得知其鎳鈷比約為56:44。此鎳鈷硫化物奈米片陣列電極在200 mA/g的充放電速率下,具有2353 mAh/g之起始放電電容量,其起始庫倫效率可達84.1%。經100次循環後仍有2195 mAh/g的可逆放電電容量,電容量維持率為93.3%。由上述可知,本研究成功製備出最適化之無黏結劑氧化矽奈米管陣列與鎳鈷硫化物奈米片陣列電極,應用於鋰離子電池負極時有良好且穩定之電化學性能表現。

    In this work, SiOx nanotube arrays have been successfully prepared by first coating ZnO nanowire templates on the surface of carbon cloth, followed by 2-step sol-gel synthesis and hydrochloric acid etching. When evaluated directly as binder-free anode for lithium-ion batteries, the resultant SiOx nanotube arrays electrodes exhibit excellent lithium storage performance with an improved cycle-life performance (approximate 17.4% capacity loss after 200 cycles at 200 mA g −1 with a capacity retention of 1472 mAh g−1 at the 200th cycle), and better rate performance (a reversible capability of 1476, 1375, 1147, 942, and 779 mA h g−1 at 200, 500, 1000, 2000, and 3000 mA g −1, respectively). The remarkably improved electrochemical performances could be attributed to following reasons. First, the conductive carbon cloth substrate offers fast electron transport. Besides, the nanotube structure of SiOx releases the stress of volume expansion, leading to a remarkably improved electrochemical performance. This novel composite electrode also holds the promising use in flexible LIBs.
    In another part, we have successfully developed binder-free NiCo2S4 based nanosheet arrays by directly growing the active material on Nickel foam in 1-step chemical bath deposition. Compared to the film electrode, the nanosheet electrode exhibited a better capacity and cycle-stability. The self-supported NiCo2S4 based nanosheet arrays exhibited a remarkable rate performance (a reversible discharge capacity of 2255, 1612, 1358, 1171, and 1049 mAh g −1 at 200, 500, 1000, 2000 and 3000 mA g −1, respectively) as well as remarkable cycling performance (approximate 6.7% capacity loss after 100 cycles at 200 mA g −1 with a capacity retention of 2195 mAh g −1 at the 100th cycle). The remarkably improved electrochemical performances could be attributed to following reasons. First, the conductive Ni foam substrate offers fast electron transport and high specific surface area. Besides, the nanosheet structure of Nickel Cobalt Sulfide releases the stress of volume expansion, leading to a remarkably improved electrochemical performance.

    摘要 I 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池 3 1.2.1 發展與介紹 3 1.2.2 鋰離子電池工作原理 4 1.2.3 負極材料 6 1.2.4 無黏結劑電極(binder-free electrodes) 10 1.3 研究動機 11 第二章 文獻回顧 13 2.1 氧化矽於鋰離子電池負極材料之應用 13 2.1.1 二氧化矽之性質、結構及應用 13 2.1.2 氧化矽(SiOx)之性質、結構及應用 14 2.1.3 以溶膠凝膠法(Sol-gel method)成長氧化矽 16 2.1.4 氧化矽於鋰離子電池負極之應用 18 2.2 鎳鈷硫化物於鋰離子負極材料之應用 27 2.2.1 鎳鈷硫化物之性質及應用 27 2.2.2 鎳鈷硫化物之製備方法 28 2.2.3 硫化鎳(Nickel Sulfide)於鋰離子電池電極之應用 32 2.2.4 鎳鈷硫化物於鋰離子電池負極之應用 37 第三章 實驗方法 43 3.1 研究材料 43 3.1.1 製備氧化鋅奈米線陣列之材料 43 3.1.2 製備氧化矽奈米管陣列之材料 43 3.1.3 製備鎳鈷硫化物奈米片陣列之材料 44 3.1.4 組裝鈕扣型電池之材料 44 3.2 製備氧化矽奈米管陣列於碳布之實驗流程 46 3.2.1 基板清洗 47 3.2.2 成長氧化鋅晶種層 47 3.2.3 成長氧化鋅奈米線陣列 47 3.2.4 以超音波震盪輔助製備氧化鋅-氧化矽核-殼奈米線陣列 48 3.2.5 以浸鍍法輔助製備氧化鋅-氧化矽核-殼奈米線陣列 48 3.2.6 以酸蝕刻製備氧化矽奈米管陣列 48 3.2.7 組裝鈕扣型電池 48 3.3 製備鎳鈷硫化物奈米片陣列於發泡鎳之實驗流程 50 3.3.1 以化學浴法成長鎳鈷硫化物奈米片陣列 51 3.3.2 組裝鈕扣型電池 51 3.4 分析與鑑定 52 3.4.1 掃描式電子顯微鏡 52 3.4.2 穿透式電子顯微鏡 54 3.4.3 X光繞射儀 55 3.4.4 拉曼光譜分析儀 57 3.4.5 X光光電子能譜儀 58 3.4.6 電池充放電能力測試 59 3.4.7 循環伏安法 60 3.4.8 電化學阻抗頻譜分析 61 第四章 氧化矽奈米管陣列應用於鋰離子電池負極之研究 64 4.1 以碳布為基板製備氧化矽奈米管陣列 64 4.1.1 成長氧化鋅奈米線陣列模板 64 4.1.2 以氧化鋅奈米線陣列為模板製備氧化矽奈米管陣列 65 4.1.3 氧化矽奈米管陣列之分析及鑑定 74 4.2 氧化矽奈米管陣列應用於鋰離子電池負極 77 4.2.1 循環伏安法測試(Cyclic Voltammetry) 77 4.2.2 循環壽命與變電流穩定度測試 78 4.2.3 氧化矽奈米管陣列經充放電循環後之分析與鑑定 84 4.2.4 氧化矽奈米管陣列經充放電循環後之交流阻抗分析 86 第五章 鎳鈷硫化物奈米片陣列應用於鋰離子電池負極之研究 89 5.1 以發泡鎳為基板製備鎳鈷硫化物奈米片陣列 89 5.1.1 反應物濃度對製備鎳鈷硫化物奈米片陣列之影響 89 5.1.2 反應時間對製備鎳鈷硫化物奈米片陣列之影響 90 5.2 鎳鈷硫化物奈米片陣列之分析及鑑定 94 5.3 鎳鈷硫化物奈米片陣列應用於鋰離子電池負極 99 5.3.1 循環伏安法測試(Cyclic Voltammetry) 99 5.3.2 循環壽命與變電流穩定度測試測試 100 5.3.3 鎳鈷硫化物奈米片陣列經充放電循環之分析與鑑定 104 5.3.4 鎳鈷硫化物奈米片陣列經充放電循環後之交流阻抗分析 105 第六章 結論 108 第七章 參考文獻 111

    1. Larcher, D. and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 2015. 7(1): p. 19-29.
    2. Diouf, B. and R. Pode, Potential of lithium-ion batteries in renewable energy. Renewable Energy, 2015. 76: p. 375-380.
    3. Saw, L.H., Y. Ye, and A.A.O. Tay, Integration issues of lithium-ion battery into electric vehicles battery pack. Journal of Cleaner Production, 2016. 113: p. 1032-1045.
    4. Yuvaraj, S., R.K. Selvan, and Y.S. Lee, An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Advances, 2016. 6(26): p. 21448-21474.
    5. Brandt, K., Historical development of secondary lithium batteries. Solid State Ionics, 1994. 69(3): p. 173-183.
    6. Xu, W., J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 513-537.
    7. Jana, A. and R.E. García, Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy, 2017. 41: p. 552-565.
    8. Scrosati, B., Lithium Rocking Chair Batteries: An Old Concept? Journal of The Electrochemical Society, 1992. 139(10): p. 2776.
    9. Blomgren, G.E., The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 2017. 164(1): p. A5019-A5025.
    10. Li, Q., J. Chen, L. Fan, X. Kong, and Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, 2016. 1(1): p. 18-42.
    11. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414: p. 359.
    12. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854.
    13. Etacheri, V., R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
    14. Tang, Y., Y. Zhang, W. Li, B. Ma, and X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev, 2015. 44(17): p. 5926-5940.
    15. Yoo, H.D., E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today, 2014. 17(3): p. 110-121.
    16. Dylla, A.G., G. Henkelman, and K.J. Stevenson, Lithium Insertion in Nanostructured TiO2(B) Architectures. Accounts of Chemical Research, 2013. 46(5): p. 1104-1112.
    17. Nitta, N., F. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    18. Gao, J., S.-Q. Shi, and H. Li, Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, 2016. 25(1): p. 018210.
    19. Zhou, G., F. Li, and H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014. 7(4): p. 1307-1338.
    20. Cao, K., L. Jiao, Y. Liu, H. Liu, Y. Wang, and H. Yuan, Ultra-High Capacity Lithium-Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes. Advanced Functional Materials, 2015. 25(7): p. 1082-1089.
    21. Chen, X., Y. Du, N.Q. Zhang, and K.N. Sun, 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries. Journal of Nanomaterials, 2012. 2012: p. 1-19.
    22. Cheng, J., B. Wang, H.L. Xin, C. Kim, F. Nie, X. Li, G. Yang, and H. Huang, Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode. Journal of Materials Chemistry A, 2014. 2(8): p. 2701-2707.
    23. Ciriminna, R., A. Fidalgo, V. Pandarus, F. Beland, L.M. Ilharco, and M. Pagliaro, The sol-gel route to advanced silica-based materials and recent applications. Chem Rev, 2013. 113(8): p. 6592-6620.
    24. Ohta, K.M., M. Fuji, T. Takei, and M. Chikazawa, Development of a simple method for the preparation of a silica gel based controlled delivery system with a high drug content. Eur J Pharm Sci, 2005. 26(1): p. 87-96.
    25. Chen, J., X. Wu, X. Hou, X. Su, Q. Chu, N. Fahruddin, and J.X. Zhao, Shape-tunable hollow silica nanomaterials based on a soft-templating method and their application as a drug carrier. ACS Appl Mater Interfaces, 2014. 6(24): p. 21921-21930.
    26. Lopes, P.E.M., V. Murashov, M. Tazi, E. Demchuk, and A.D. MacKerell, Development of an Empirical Force Field for Silica. Application to the Quartz−Water Interface. The Journal of Physical Chemistry B, 2006. 110(6): p. 2782-2792.
    27. Xia, H., G. Wan, G. Chen, and Q. Bai, Preparation of superficially porous core-shell silica particle with controllable mesopore by a dual-templating approach for fast HPLC of small molecules. Materials Letters, 2017. 192: p. 5-8.
    28. Philipp, H.R., Optical properties of non-crystalline Si, SiO, SiOx and SiO2. Journal of Physics and Chemistry of Solids, 1971. 32(8): p. 1935-1945.
    29. Dupree, R., D. Holland, and D.S. Williams, An assessment of the structural models for amorphous SiO using MAS NMR. Philosophical Magazine B, 1984. 50(3): p. L13-L18.
    30. Schulmeister, K. and W. Mader, TEM investigation on the structure of amorphous silicon monoxide. Journal of Non-Crystalline Solids, 2003. 320(1): p. 143-150.
    31. Hirata, A., S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, and M. Chen, Atomic-scale disproportionation in amorphous silicon monoxide. Nature Communication, 2016. 7: p. 11591.
    32. Chen, T., J. Wu, Q. Zhang, and X. Su, Recent advancement of SiO x based anodes for lithium-ion batteries. Journal of Power Sources, 2017. 363: p. 126-144.
    33. Stöber, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968. 26(1): p. 62-69.
    34. Wang, D. and G.P. Bierwagen, Sol–gel coatings on metals for corrosion protection. Progress in Organic Coatings, 2009. 64(4): p. 327-338.
    35. Rahman, I.A. and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. Journal of Nanomaterials, 2012. 2012: p. 1-15.
    36. Rahman, I.A. and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. Journal of Nanomaterials, 2012. 2012: p. 15.
    37. Danks, A.E., S.R. Hall, and Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons, 2016. 3(2): p. 91-112.
    38. Zhong, H., H. Zhan, and Y.-H. Zhou, Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery. Journal of Power Sources, 2014. 262: p. 10-14.
    39. Wang, W., L. Gu, H. Qian, M. Zhao, X. Ding, X. Peng, J. Sha, and Y. Wang, Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. Journal of Power Sources, 2016. 307: p. 410-415.
    40. Sun, L., T. Su, L. Xu, and H.B. Du, Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes. Phys Chem Chem Phys, 2016. 18(3): p. 1521-1525.
    41. Chan, C.K., R.N. Patel, M.J. O’Connell, B.A. Korgel, and Y. Cui, Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano, 2010. 4(3): p. 1443-1450.
    42. Tesfaye, A.T., R. Gonzalez, J.L. Coffer, and T. Djenizian, Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries. ACS Appl Mater Interfaces, 2015. 7(37): p. 20495-20498.
    43. Wang, X., G. Li, M.H. Seo, G. Lui, F.M. Hassan, K. Feng, X. Xiao, and Z. Chen, Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. ACS Appl Mater Interfaces, 2017. 9(11): p. 9551-9558.
    44. Zuo, X., J. Zhu, P. Müller-Buschbaum, and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017. 31: p. 113-143.
    45. Ren, Y., X. Wu, and M. Li, Highly stable SiO x /multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochimica Acta, 2016. 206: p. 328-336.
    46. Tu, J., Y. Yuan, P. Zhan, H. Jiao, X. Wang, H. Zhu, and S. Jiao, Straightforward Approach toward SiO2 Nanospheres and Their Superior Lithium Storage Performance. The Journal of Physical Chemistry C, 2014. 118(14): p. 7357-7362.
    47. Wang, H., P. Wu, M. Qu, L. Si, Y. Tang, Y. Zhou, and T. Lu, Highly Reversible and Fast Lithium Storage in Graphene-Wrapped SiO2Nanotube Network. ChemElectroChem, 2015. 2(4): p. 508-511.
    48. Sun, Q., B. Zhang, and Z.-W. Fu, Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Applied Surface Science, 2008. 254(13): p. 3774-3779.
    49. Yan, N., F. Wang, H. Zhong, Y. Li, Y. Wang, L. Hu, and Q. Chen, Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. SCIENTIFIC REPORTS, 2013. 3: p. 1568.
    50. Guo, B., J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, and L. Chen, Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications, 2008. 10(12): p. 1876-1878.
    51. Kim, H.J., S. Choi, S.J. Lee, M.W. Seo, J.G. Lee, E. Deniz, Y.J. Lee, E.K. Kim, and J.W. Choi, Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Letters, 2016. 16(1): p. 282-288.
    52. Yao, Y., J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. Journal of Power Sources, 2011. 196(23): p. 10240-10243.
    53. Wang, H., P. Wu, H. Shi, W. Tang, Y. Tang, Y. Zhou, P. She, and T. Lu, Hollow porous silicon oxide nanobelts for high-performance lithium storage. Journal of Power Sources, 2015. 274: p. 951-956.
    54. Shi, L., W. Wang, A. Wang, K. Yuan, Z. Jin, and Y. Yang, Scalable synthesis of core-shell structured SiO x /nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. Journal of Power Sources, 2016. 318: p. 184-191.
    55. Zhang, P., L. Wang, J. Xie, L. Su, and C.-a. Ma, Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014. 2(11): p. 3776.
    56. Jeong, G., J.-H. Kim, Y.-U. Kim, and Y.-J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. Journal of Materials Chemistry, 2012. 22(16): p. 7999.
    57. Yang, J., Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, and O. Yamamoto, SiOx-based anodes for secondary lithium batteries. Solid State Ionics, 2002. 152-153: p. 125-129.
    58. Wang, J., H. Zhao, J. He, C. Wang, and J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries. Journal of Power Sources, 2011. 196(10): p. 4811-4815.
    59. Zhang, L., J. Deng, L. Liu, W. Si, S. Oswald, L. Xi, M. Kundu, G. Ma, T. Gemming, S. Baunack, F. Ding, C. Yan, and O.G. Schmidt, Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Advanced Materials, 2014. 26(26): p. 4527-4532.
    60. Yu, B.-C., Y. Hwa, J.-H. Kim, and H.-J. Sohn, A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites. Electrochimica Acta, 2014. 117: p. 426-430.
    61. Lv, P., H. Zhao, C. Gao, T. Zhang, and X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochimica Acta, 2015. 152: p. 345-351.
    62. Lee, D.J., M.-H. Ryou, J.-N. Lee, B.G. Kim, Y.M. Lee, H.-W. Kim, B.-S. Kong, J.-K. Park, and J.W. Choi, Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries. Electrochemistry Communications, 2013. 34: p. 98-101.
    63. Ren, Y. and M. Li, Facile synthesis of SiO x @C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. Journal of Power Sources, 2016. 306: p. 459-466.
    64. Xia, C., P. Li, A.N. Gandi, U. Schwingenschlögl, and H.N. Alshareef, Is NiCo2S4 Really a Semiconductor? Chemistry of Materials, 2015. 27(19): p. 6482-6485.
    65. Xiao, J., X. Zeng, W. Chen, F. Xiao, and S. Wang, High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem. Commun.,, 2013. 49(100): p. 11734-11736.
    66. Yan, M., Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, and Z. Huang, Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor. ACS Appl Mater Interfaces, 2016. 8(37): p. 24525-24535.
    67. Liu, Q., J. Jin, and J. Zhang, NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces, 2013. 5(11): p. 5002-5008.
    68. Chen, W., C. Xia, and H.N. Alshareef, One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. ACS Nano, 2014. 8(9): p. 9531-9541.
    69. Kristl, M., B. Dojer, S. Gyergyek, and J. Kristl, Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon, 2017. 3(3): p. e00273.
    70. Xiong, X., G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, and M. Liu, Controlled synthesis of NiCo 2 S 4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015. 16: p. 71-80.
    71. Zou, R., Z. Zhang, M.F. Yuen, M. Sun, J. Hu, C.-S. Lee, and W. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Materials, 2015. 7(6): p. e195-e195.
    72. Wen, Y., S. Peng, Z. Wang, J. Hao, T. Qin, S. Lu, J. Zhang, D. He, X. Fan, and G. Cao, Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. Journal of Materials Chemistry A, 2017. 5(15): p. 7144-7152.
    73. Cai, D., D. Wang, C. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, and T. Wang, Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochimica Acta, 2015. 151: p. 35-41.
    74. Shen, L., Q. Che, H. Li, and X. Zhang, Mesoporous NiCo2O4Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage. Advanced Functional Materials, 2014. 24(18): p. 2630-2637.
    75. Yu, D.J., Y.F. Yuan, D. Zhang, S.M. Yin, J.X. Lin, Z. Rong, J.L. Yang, Y.B. Chen, and S.Y. Guo, Nickel cobalt sulfide Nanotube Array on Nickel Foam as Anode Material for Advanced Lithium-Ion Batteries. Electrochimica Acta, 2016. 198: p. 280-286.
    76. Park, G.D., J.S. Cho, and Y.C. Kang, Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale, 2015. 7(40): p. 16781-16788.
    77. Wang, J.-G., D. Jin, R. Zhou, C. Shen, K. Xie, and B. Wei, One-step synthesis of NiCo 2 S 4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016. 306: p. 100-106.
    78. Wan, H., J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, and Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 2013. 15(38): p. 7649.
    79. Zhu, F., H. Xia, and T. Feng, Nanowire interwoven NiCo2S4nanowall arrays as promising anodes for lithium ion batteries. Materials Technology, 2015. 30(sup2): p. A53-A57.
    80. Wu, X., S. Li, B. Wang, J. Liu, and M. Yu, NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries. Phys Chem Chem Phys, 2016. 18(6): p. 4505-4512.
    81. Bhattacharjya, D., A. Sinhamahapatra, J.J. Ko, and J.S. Yu, High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun.,, 2015. 51(69): p. 13350-13353.
    82. Khoo, S.Y., J. Miao, H.B. Yang, Z. He, K.C. Leong, B. Liu, and T.T.Y. Tan, One-Step Hydrothermal Tailoring of NiCo2S4Nanostructures on Conducting Oxide Substrates as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. Advanced Materials Interfaces, 2015. 2(18): p. 1500384.
    83. Zhu, J., Y. Li, S. Kang, X.-L. Wei, and P.K. Shen, One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. Journal of Materials Chemistry A, 2014. 2(9): p. 3142.
    84. Mahmood, N., C. Zhang, and Y. Hou, Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small, 2013. 9(8): p. 1321-1328.
    85. Ni, S., X. Yang, and T. Li, Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. Journal of Materials Chemistry, 2012. 22(6): p. 2395.
    86. Wang, Z., X. Li, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen, and G. Qian, Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. Journal of Materials Chemistry A, 2014. 2(21): p. 7912.
    87. Ni, S., X. Yang, and T. Li, Fabrication of porous Ni3S2/Ni nanostructured electrode and its application in lithium ion battery. Materials Chemistry and Physics, 2012. 132(2-3): p. 1103-1107.
    88. Lai, C.-H., K.-W. Huang, J.-H. Cheng, C.-Y. Lee, W.-F. Lee, C.-T. Huang, B.-J. Hwang, and L.-J. Chen, Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications. Journal of Materials Chemistry, 2009. 19(39): p. 7277.
    89. Feng, N., D. Hu, P. Wang, X. Sun, X. Li, and D. He, Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys Chem Chem Phys, 2013. 15(24): p. 9924-9930.
    90. Ruan, H., Y. Li, H. Qiu, and M. Wei, Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2014. 588: p. 357-360.
    91. Khan, M., M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, and W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 2015. 3(37): p. 18753-18808.
    92. Kulkarni, P., S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, and M.V. Reddy, Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A, 2017. 5(42): p. 22040-22094.
    93. Das, S.K., R. Mallavajula, N. Jayaprakash, and L.A. Archer, Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. Journal of Materials Chemistry, 2012. 22(26): p. 12988-12992.
    94. Yang, W., L. Chen, J. Yang, X. Zhang, C. Fang, Z. Chen, L. Huang, J. Liu, Y. Zhou, and Z. Zou, One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries. Chem. Commun.,, 2016. 52(30): p. 5258-5261.
    95. Birkl, C.R., E. McTurk, M.R. Roberts, P.G. Bruce, and D.A. Howey, A Parametric Open Circuit Voltage Model for Lithium Ion Batteries. Journal of The Electrochemical Society, 2015. 162(12): p. A2271-A2280.
    96. 羅聖全, 科學基礎研究之重要利器-掃描式電子顯微鏡(SEM). 科學研習, 2013. 52(5): p. 2-4.
    97. Koçak, A., MATERIALS SCIENCE AND ENGINEERING #Thin Film Preparation,Particle Size and Thickness Analysis Experimental Report. 2018.
    98. 李曉琪, 穿透式電子顯微鏡(TEM):電子波動性看奈米世界. 科學研習, 2013. 52(5): p. 7-11.
    99. Tamer, M., Quantitative Phase Analysis Based on Rietveld Structure Refinement for Carbonate Rocks. Journal of Modern Physics, 2013. 04(08): p. 1149-1157.
    100. 鄭信民、林麗娟, X光繞射應用簡介. 工業材料, 2002. 181: p. 100-108.
    101. Butler, H.J., L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. McAinsh, N. Stone, and F.L. Martin, Using Raman spectroscopy to characterize biological materials. nature protocols, 2016. 11(4): p. 664-687.
    102. Lupoi, J.S., E. Gjersing, and M.F. Davis, Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front Bioeng Biotechnol, 2015. 3: p. 50.
    103. Fadley, C.S., X-ray photoelectron spectroscopy: Progress and perspectives. Journal of Electron Spectroscopy and Related Phenomena, 2010. 178-179: p. 2-32.
    104. Elgrishi, N., K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 2017. 95(2): p. 197-206.
    105. Hansen, S., E. Quiroga-González, J. Carstensen, and H. Föll, Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochimica Acta, 2016. 217: p. 283-291.
    106. Ogihara, N., S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, and Y. Ukyo, Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell. Journal of The Electrochemical Society, 2012. 159(7): p. A1034-A1039.
    107. Chang, M.-T., Y.-S. Lin, and K.-C. Chen, Identification of the Parameters in Equivalent Circuit Model of Lithium-Ion Battery. The Electrochemical Society, 2014. MA2014-01(1): p. 84-84.
    108. Andre, D., M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D.U. Sauer, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. Journal of Power Sources, 2011. 196(12): p. 5334-5341.
    109. Tan, H., H.-W. Cho, and J.-J. Wu, Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries. Journal of Power Sources, 2018. 388: p. 11-18.
    110. Siddiquey, I.A., T. Furusawa, M. Sato, N.M. Bahadur, M.M. Alam, and N. Suzuki, Sonochemical synthesis, photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrasonics Sonochemistry, 2012. 19(4): p. 750-755.
    111. Figus, C., M. Patrini, F. Floris, L. Fornasari, P. Pellacani, G. Marchesini, A. Valsesia, F. Artizzu, D. Marongiu, M. Saba, F. Marabelli, A. Mura, G. Bongiovanni, and F. Quochi, Synergic combination of the sol-gel method with dip coating for plasmonic devices. Beilstein Journal of Nanotechnology, 2015. 6: p. 500-507.
    112. Favors, Z., W. Wang, H.H. Bay, A. George, M. Ozkan, and C.S. Ozkan, Stable cycling of SiO(2) nanotubes as high-performance anodes for lithium-ion batteries. SCIENTIFIC REPORTS, 2014. 4: p. 4605.
    113. Qiang, W., H. Huanhuan, W. Jian, and S. Zhurui, Fabrication of SiO x Ultra-Fine Nanoparticles by IR nanosecond laser ablation as anode materials for lithium ion battery. Applied Surface Science, 2017. 422: p. 155-161.
    114. Wang, J., P. King, and R.A. Huggins, Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte. Solid State Ionics, 1986. 20(3): p. 185-189.
    115. Wang, J., I.D. Raistrick, and R.A. Huggins, Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes. Journal of The Electrochemical Society, 1986. 133(3): p. 457-460.
    116. Wang, C., W. Wan, Y. Huang, J. Chen, H.H. Zhou, and X.X. Zhang, Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 2014. 6(10): p. 5351-5358.
    117. Yu, H., C. Zhu, K. Zhang, Y. Chen, C. Li, P. Gao, P. Yang, and Q. Ouyang, Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. Journal of Materials Chemistry A, 2014. 2(13): p. 4551-4557.
    118. Wu, X., S. Li, B. Wang, J. Liu, and M. Yu, One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance. RSC Advances, 2015. 5(99): p. 81341-81347.
    119. Song, X., X. Li, Z. Bai, B. Yan, D. Xiong, L. Lin, H. Zhao, D. Li, and Y. Shao, Rationally-designed configuration of directly-coated Ni 3 S 2 /Ni electrode by RGO providing superior sodium storage. Carbon, 2018. 133: p. 14-22.
    120. Yin, P.-F., C. Zhou, X.-Y. Han, Z.-R. Zhang, C.-H. Xia, and L.-L. Sun, Shape and phase evolution of nickel sulfide nano/microcrystallines via a facile way. Journal of Alloys and Compounds, 2015. 620: p. 42-47.

    下載圖示 校內:2023-08-19公開
    校外:2023-08-20公開
    QR CODE