| 研究生: |
楊琇惠 Yang, Hsiu-Hui |
|---|---|
| 論文名稱: |
可調節式降壓型充電式電荷泵浦直流-直流轉換器 A Step-Down Regulated Charge-Pump DC-DC Converter |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 充電式電荷泵浦 、降壓 、直流-直流轉換器 、切換式電容 |
| 外文關鍵詞: | step-down, DC-DC converter, charge pump, switched-capacitor |
| 相關次數: | 點閱:86 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於可攜性電子產品日益蓬勃發展,加上其功能越來越多樣化,因此通常需要電源管理晶片將時變的電池電壓轉換成不同子電路所需求之固定電壓,於是如何在晶片內,有效內建高效能、高精準度且體積小之直流電源轉換核心,已成為重要的課題。相對於交換式電壓轉換器,充電式電荷泵浦只使用電容當儲能元件,沒有用到電感,有較節省電路面積的優勢,理論上能在單一晶片上完成設計。然而以往的電荷泵浦大多是沒有調節功能,使得輸出電壓不夠精確,有鑑於此,本論文提出一新型可調節式的電荷泵浦架構,利用加入之回授設計去調節充電電流,著手改善輸出的精確度與穩定性,並提升降壓模式的效率,如此將能延長電池使用時間,增加了充電式電荷泵浦的優勢。
研究晶片是透過國家晶片系統設計中心提供的製程服務,使用台灣積體電路公司0.35μm 2P4M 5V混合訊號製程,以28 S/B封裝,尺寸為1.195×1.304mm2。量測的結果驗證了本論文提出的架構之可行性,能夠將5伏的輸入電壓轉換成穩定的3.3伏電壓輸出。實測結果符合模擬的性能,與近期被提出的可調節式電荷泵浦架構相比,本晶片的電路架構改善了直流轉換器的兩項重要參數—效能與負載調節力(為0.417mV/mA),且精確度亦提升許多(為±0.12%)。此外調節的功能亦使得電壓轉換比例可由回授電阻比例去調整,不再侷限於電路架構。
Recently, more and more portable electronic products have been introduced to the market. To provide the power supply of different subcircuits, it usually need power management IC to convert the time-varying battery voltage to the desired regulated supply voltages. Therefore, the issue of how to build a power converter with high accuracy and high efficiency has drawn a lot of attention. Compared with switching regulators, charge pump dc-dc converters use capacitors only for energy storage. Since no bulky inductors are required, the circuits can be integrated into a chip theoretically. However, the charge pump circuits are usually not regulated in the past. To enhance the accuracy and the stability, this paper presented a new regulated charge pump which adds the feedback circuit to control the charging current. The power efficiency also can be improvement by the new topology. As a result, the battery life can be increased, which makes charge pump more attractive.
The die area of the proposed chip is 1.195×1.304mm2. The chip was implemented by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm 2P4M 5V mixed-signal polycide process, patronized by National Chip Implementation Center(CIC). The measured results show that the input voltage indeed can be step down to the desired output voltage. Compared to the previous literature, the new structure improves the efficiency、load Regulation(0.417mV/mA) and accuracy(±0.12%) of the charge pump circuit. Furthermore, the regulated scheme makes the voltage conversion ratio no longer predetermined by the converter topology, and can be varied by adjusting the feedback resistance ratio.
[1] A.K.P Viraj and G.A.J Amaratunga, “A Monolithic CMOS 5V/1V Switched Capacitor DC-DC Step-down Converter,” IEEE PESC, pp. 2510-2514, June 2007
[2] J. Han, A. von Jouanne, and G. C. Temes, “A New Approach to Reducing Output Ripple in Switched-Capacitor-Based Step-Down DC-DC Converters,” IEEE IAS, vol. 2, pp. 1115–1120, Oct. 2004.
[3] S. Bin, Y. Yujia, W. Ying, and H.Zhiliang,” High Efficiency, Inductorless Step-Down DC/DC Converter,” IEEE ASICON 2005, vol. 1, pp. 395-398, Oct. 2005.
[4] J. K. Dickson, “On-chip High-Voltage Generation in NMOS Integrated Circuits Using an Improved Voltage Multiplier Technique,” IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 374-378, June 1976.
[5] M. S. Makowski, “Realizability Conditions and Bounds on Synthesis of Switched-Capacitor DC–DC Voltage Multiplier Circuits,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 684–691, Aug. 1997.
[6] J. A. Starzyk, Y.W. Jan, and F. Qiu, ”A DC-DC Charge Pump Design Based on Voltage Doublers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 350-359, Mar. 2001.
[7] B. Robert Gregoire, “A Compact Switched-Capacitor Regulated Charge Pump Power Supply,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1944-1953, Aug. 2006.
[8] http://www.ti.com.tw/articles/detail.asp?sno=58 “智慧型手機電源管理系統的設計”
[9] Y. W. Lu, G. Feng, Y.F. Liu, “A Large Signal Dynamic Model for DC-to-DC Converters with Average Current Control,” IEEE APEC ‘04, vol. 2, pp. 797-803.
[10] David Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc., 1997.
[11] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Education, 2002.
[12] Sergio Franco, “Design with operational amplifiers and analog integrated circuits,” McGraw-Hill companies, Inc., 2002.