| 研究生: |
楊文瑞 Yang, Wen-Ruei |
|---|---|
| 論文名稱: |
Mg4Nb2O9與Zn3Nb2O8陶瓷材料之微波介電特性改善與應用 Improved Microwave Dielectric Properties and Applications of Mg4Nb2O9 and Zn3Nb2O8 Ceramic Materials |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 微波介電特性 、帶通濾波器 |
| 外文關鍵詞: | Microwave dielectric properties, Bandpass filter |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著快速發展的微波無線通信系統(例如:行動電話系統,全球定位系統和無線區域網路),對高性能介電陶瓷的需求一直不斷增加。但由於通信系統中的工作頻率逐漸被擴展到較高的頻率範圍,所以近年來微波介質陶瓷的研究焦點都集中在低損耗(高品質因素)的電介質上。此外,降低燒結溫度也成為製造小型化多層元件的一個重要課題。如以上所述,本論文將分為三個部分加以探討及研究:
一、Mg4Nb2O9陶瓷之研究
[a]剛玉結構的Mg4Nb2O9具有優異的微波介電特性,但它同時也需要在高達1350至1400°C的燒結溫度下燒結10小時。在本論文中,選擇Fe2O3作為燒結促進劑加入Mg4Nb2O9陶瓷中來降低其燒結溫度。結果發現,在Mg4Nb2O9陶瓷中添加Fe2O3可以達到降低燒結溫度(〜130°C)和改善Q×f值的效果。
[b](Mg1−xZnx)4Nb2O9 (x = 0.02–0.08)陶瓷系統是利用傳統的氧化物混合法來合成,在這裡將對其微波介電特性和表面微結構進行研究,並由晶格常數和元素分析來確認本系統的固溶性。 (Mg0.95Zn0.05)4Nb2O9陶瓷材料能夠得到一個良好的微波介電特性 (εr ~ 13, Q×f ~ 247,000 GHz, τf ~ –67 ppm/°C)。
[c]為了產生對溫度穩定的材料,於是將鈦酸鍶(SrTiO3)加入到(Mg0.95Zn0.05)4Nb2O9陶瓷中。摻雜1 wt%的Fe2O3來使其在較低溫的燒結溫度下還能夠達到緻密燒結的效果。並由XRD、BEI和EDS分析證實其為兩相共存的系統。適當地調整摻雜1wt% Fe2O3的(1–x)(Mg0.95Zn0.05)4Nb2O9–xSrTiO3陶瓷中x的比例就可以實現趨近零的τf值。在1150°C燒結4小時的條件下摻雜1wt% Fe2O3的0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3陶瓷擁有εr ~ 20.81,Q×f ~ 108,000 GHz,τf ~ –4.3 ppm/°C的微波介電特性,這使得它可以應用在微帶線濾波器的基板上。
二、Zn3Nb2O8陶瓷之調查
最近由於其相對低的燒結溫度(1150°C)和低的介質損耗,Zn3Nb2O8陶瓷已經引起相當多的關注。在Zn3Nb2O8陶瓷中利用M (M = Mg,Co,Ni)取代Zn,並於本論文中討論其相變化,晶體結構和微波介電特性。為了降低燒結溫度使其能應用在低溫共燒陶瓷,將摻雜少量的B2O3和CuO到陶瓷材料中。並進一步的研究其微波介電特性、二次相以及與銀電極共燒的化學穩定性。
三、微帶濾波器之設計與製作
在本章節,採用了步階阻抗環形諧振器與零度饋入結構來設計一個小型化的帶通濾波器。並透過使用高介電常數的陶瓷基板來降低濾波器的尺寸。而通帶的選擇性則可以利用零度饋電結構獲得改善。帶通濾波器中心頻率設計在2.4 GHz、約9%的頻寬,並討論其頻率響應在分別使用FR4、Al2O3和摻雜1wt% Fe2O3的0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3陶瓷基板的影響。
With the rapid progress of microwave wireless communication such as mobile telephone systems, global positioning systems (GPS) and wireless local area networks (WLAN), the demand for high-performance dielectric ceramics has been ever-increasing. Because the working frequency of communication systems will be extended to a higher frequency regime in the future, the research of microwave dielectric ceramics has focused on the development of extremely low-loss (high quality factor, Q) dielectrics. Moreover, the reduction of sintering temperatures has also become an important issue in the fabrication of miniaturized multi-layer devices. As mentioned above, this dissertation is divided three parts which includes the study of high quality factor and low sintering temperature microwave dielectrics, and their applications on microstrip bandpass filters at the microwave frequency.
1. Investigation of High-Q Mg4Nb2O9 Ceramics
[a] The corundum-structured Mg4Nb2O9 has an excellent microwave dielectric properties, but it also required a sintering temperature of as high as 1350–1400°C /10 h. In this dissertation, Fe2O3 was chosen as a sintering aid and was added to Mg4Nb2O9 ceramics to lower its sintering temperature. A sintering temperature reduction (~130°C) and an improvement of Q×f value could be achieved by adding Fe2O3 to the Mg4Nb2O9 ceramics.
[b] The (Mg1–xZnx)4Nb2O9 ceramic with a smaller increment in x were prepared by solid-state method and its microwave dielectric properties and microstructures were also investigated in this topic. The forming of (Mg1–xZnx)4Nb2O9 (x = 0.02–0.08) solid solution was confirmed by the measured lattice parameters and the EDS analysis. The (Mg0.95Zn0.05)4Nb2O9 ceramics possesses a good combination of dielectric properties with εr ~ 13, Q×f ~ 247,000 GHz at 11.9 GHz, and τf ~ –67 ppm/°C.
[c] In order to produce a temperature-stable material, SrTiO3 was added to (Mg0.95Zn0.05)4Nb2O9 ceramic. Doping with 1 wt% Fe2O3 effectively achieve dense sintered ceramics at low sintering temperatures. A two-phase system was confirmed by the XRD patterns, BEI and EDS analysis. By appropriately adjusting the x value in the (1–x)(Mg0.95Zn0.05)4Nb2O9–xSrTiO3 ceramic with 1w% Fe2O3 additive, a near zero f value can be achieved. A dielectric constant εr of 20.81, a Q×f value of 108,000 GHz at 9.63 GHz and a τf value of –4.3 ppm/°C were obtained for 0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3 ceramics with 1w% Fe2O3 additive sintered at 1150°C for 4 h, which makes it a very promising candidate material for applications in microwave planar filters.
2. Study of Low-temperature Sintered Zn3Nb2O8 Ceramics
Recently, monoclinic-structured Zn3Nb2O8 ceramics have attracted more attention because of its relatively low dielectric loss and low sintering temperature (1150°C). The effects of M (M = Mg, Co and Ni) substitution for Zn on the phase relation, crystal structure and microwave dielectric properties of Zn3Nb2O8 ceramics were investigated in this dissertation. Results indicate that the partial substitution boosted the Q×f to an even higher value. In order to reduce the sintering temperature for application in LTCC devices, small amounts of B2O3 and CuO were added to the ceramics. Furthermore, the microwave dielectric properties, the presence of the second phase, and the chemical compatibility with the silver electrodes were also investigated.
3. Design and Fabrication of Planar Filters
A miniaturized bandpass filters using stepped impedance ring resonators with zero-degree feed structure are presented in this section. In addition, the bandpass filter using high-permittivity ceramic substrate provide good miniaturization ability. The selectivity of passband can be improved by utilizing the zero-degree feed structure. The miniaturized bandpass filters are designed at a center frequency of 2.4 GHz with bandwidth of about 9%. The frequency responses of the filters using FR4, Al2O3 and 1wt% Fe2O3 doped 0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3 ceramic substrates are investigated.
[1] A. Sasaki and Y. Shimada, “Electrical Design Technology for Low Dielectric Constant Multilayer Ceramic Substrate,’’ IEEE Trans. Components Hybrids Manuf. Technol., 15 (1992) 56–62.
[2] Y. Shimada, Y. Yamashita, and H. Takamizawa, “Low Dielectric Constant Multilayer Glass–Ceramic Substrate with Ag–Pd Wiring for VLSI Package,’’ IEEE Trans. Components Hybrids Manuf. Technol., 11 (1988) 163–170.
[3] A. Yoshida, H. Ogawa, A. Kan, S. Ishihar, and Y. Higashida, ”Influence of Zn and Ni Substitutions for Mg on Dielectric Properties of (Mg4–xMx)4(Nb2–ySby)2O9 (M=Zn and Ni) Solid Solutions,” J. Eur. Ceram. Soc., 24 (2004) 1765–1768.
[4] J. Shimada, ‘‘Dielectric Loss and Damping Constants of Lattice Vibrations in Ba(Mg1/3Ta2/3)O3 Ceramics,’’ J. Eur. Ceram. Soc., 23(2003) 2647–2651.
[5] C. L. Huang and S. H. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46 (2007) 283–285.
[6] S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, ‘‘Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave-Frequencies,’’ J. Am. Ceram. Soc., 66 (1983) 421–433.
[7] T. Okawa and H. Utaki, “The Development of a Multilayer Dielectric Filter Using Low Temperature Fired Microwave Ceramics,” Sumitomo Search, 47 (1991) 117.
[8] H. Zhou, X. Liu, X. Chen, L. Fang, and Y. Wang, “ZnLi2/3Ti4/3O4: A New Low Loss Spinel Microwave Dielectric Ceramic,” J. Eur. Ceram. Soc., 32 (2012) 261–265.
[9] Q. L. Zhang, D. Zou, and H. Yang, “Microwave Dielectric Properties of Ba3Ti4–x(Zn1/3Nb2/3)xNb4O21 for Low Temperature Co-Fired Ceramics,” J. Eur. Ceram. Soc., 31 (2011) 265–272.
[10] C. L. Huang, J. Y. Chen, and C. Y. Jiang, “Low-Temperature Sintering Microwave Dielectrics Using CuO-Doped Zn(Nb0.95Ta0.05)2O6 Ceramics,” J. Am. Ceram. Soc., 93 (2010) 2755–2759.
[11] D. Zhou, H. Wang, L. X. Pang, X. Yao, and X. G. Wu, “Low Temperature Firing of BiSbO4 Microwave Dielectric Ceramic with B2O3–CuO Addition,” J. Eur. Ceram. Soc., 29 (2009) 1543–1546.
[12] L. X. Pang and D. Zhou, “Microwave Dielectric Properties of Low‐Firing Li2MO3 (M = Ti, Zr, Sn) Ceramics with B2O3–CuO Addition,” J. Am. Ceram. Soc., 93 (2010) 3614–3617.
[13] Y. C. Lee, C. H. Lin, and I. N. Lin, “Bi–Zn–Nb–O Microwave Dielectric Materials for Multilayer Filter Application,” Mater. Chem. Phys., 79 (2003) 124–128.
[14] Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, “Improvement of the Dielectric Properties of Rutile-Doped Al2O3 Ceramics by Annealing Treatment,” J. Eur. Ceram. Soc., 26 (2006) 2093–2096.
[15] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, “Crystal Structure of Corundum Type Mg4(Nb2–xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss,” J. Eur. Ceram. Soc., 23 (2003) 2485–2488.
[16] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 (2006) 3441–3445.
[17] C. L. Huang and Y. W. Tseng, “Microwave Dielectric Properties of Mg1.8Ti1.1O4 Ceramics,” Mater. Lett., 64 (2010) 885–887.
[18] K. Wakino, ‘‘Recent Development of Dielectric Resonator Materials and Filters in Japan,’’ Ferroelectrics, 91 (1989) 69–86.
[19] W. W. Cho, K. I. Kakimoto, and H. Ohsato, “High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency,” Jpn. J. Appl. Phys., 43 (2004) 6221–6224.
[20] H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb, Ta),” Jpn. J. Appl. Phys., 36 (1997) L1318–L1320.
[21] C. L. Huang and J. Y. Chen, “Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+,” J. Am. Ceram. Soc., 92 (2009) 1845–1848.
[22] P. S. Anjana, I. N. Jawahar, and M. T. Sebastian, “Low Loss, Temperature Stable Dielectric Ceramics in ZnNb2O6–Zn3Nb2O8 System for LTCC Applications,” J. Mater. Sci.: Mater. Electron, 20 (2009) 587–596.
[23] H. J. Youn and K. Kim, “Microstructural Characteristics of Ba(Mg1/3Ta2/3)O3 Ceramics and Its Related Microwave Dielectric Properties,” Jpn. J. Appl. Phys., 35 (1996) 3947–3953.
[24] C. F. Tseng and C. L. Huang, “Low-Dielectric Loss Characteristics of Nd(Co1/2Ti1/2)O3 Ceramics at Microwave Frequencies”, J. Am. Ceram. Soc., 90 (2007) 1619–1622.
[25] H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys., 33 (1994) 5463–5465.
[26] D. Y. Lee, S. J. Yoon, J. H. Yeo, S. Nahm, J. H. Paik, and K. C. Whang, ‘‘Crystal Structure and Microwave Dielectric Properties of La(Mg1/2Ti1/2)O3 Ceramics,’’J. Mater. Sci. Lett., 19 (2000) 131–134.
[27] C. L. Huang and J. Y. Chen, “Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1–xCox)Ta2O6 Solid Solutions,” J. Am. Ceram. Soc., 93 (2010) 470–473
[28] C. L. Huang and J. Y. Chen, “Phase Relation and Microwave Dielectric Properties of (Zn1–xCox)Ta2O6 System,” J. Am. Ceram. Soc., 93 (2010) 1248–1251.
[29] M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by the Polymeric Precursor Method,” J. Eur. Ceram. Soc., 22 (2002) 1693–1698.
[30] W. Y. Lin and R. F. Speyer, “Dielectric Properties of Microstructure- Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 (1999) 325–330.
[31] S. I. Hirano, T. Hayashi, and A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics,” J. Am. Ceram. Soc., 74 (1991) 1320–1324.
[32] P. V. Bijumon and M. T. Sebastian, “Influence of Glass Additives on the Microwave Dielectric Properties of Ca5Nb2TiO12 Ceramics,” Mater. Sci. Eng. B, 123 (2005) 31–40.
[33] H. Zhang, L. Fang, R. Dronskowski, P. Mueller, and R. Z. Yuan. “Some A6B5O18 Cation-Deficient Perovskites in the BaO–La2O3–TiO2–Nb2O5 System,” J. Solid-State Chem., 177 (2004) 4007–4012.
[34] N. Santha and M. T. Sebastian, “Low Temperature Sintering and Microwave Dielectric Properties of Ba4Sm9.33Ti18O54 Ceramics,” Mater. Res. Bull., 43 (2008) 2278–2284.
[35] N. Kumada, K. Taki, and N. Kinomura, “Single Crystal Structure Refinement of a Magnesium Niobium Oxide: Mg4Nb2O9,” Mater. Res. Bull., 35 (2000) 1017–1021.
[36] A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura , “Crystal Structural Refinement of Corundum-Structured A4M2O9 (A = Co and Mg, M = Nb and Ta) Microwave Dielectric Ceramics by High-Temperature X-ray Powder Diffraction,” J. Eur. Ceram. Soc., 27 (2007) 2977–2981.
[37] P. H. Sun, T. Nakamura, Y. J. Shan, Y. Inaguma, M. Itoh, and T. Kitamura, “Dielectric Behavior of (1–x)LaAlO3–xSrTiO3 Solid Solution System at Microwave Frequencies”, Jpn. J. Appl. Phys., 37 (1998) 5625–5629.
[38] A. Pollard, “Note on the System Niobium Oxide-Zinc Oxide,” J. Am. Ceram. Soc., 44 (1961) 630.
[39] R. R. Dayal, ‘‘The Binary System ZnO–Nb2O5,” J. Less-Common Met., 26 (1972) 381–390.
[40] R. C. Pullar, J. D. Breeze, and N. M. Alford, ‘‘Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics,” J. Am. Ceram. Soc., 88 (2005) 2466–2471.
[41] M. Isobe, F. Marumo, S. I. Iwai, and Y. Kondo, ‘‘The Crystal Structure of Zn3Nb2O8,” Bull. Tokyo Inst. Technol., 120 (1974) 1–6.
[42] M. C. Wu, K. T. Huang, and W. F. Su, ‘‘Microwave Dielectric Properties of Doped Zn3Nb2O8 Ceramics Sintered Below 950°C and Their Compatibility with Silver Electrode,” Mater. Chem. Phys., 98 (2006) 406–409.
[43] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed, Wiley, New York, (1976).
[44] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House, Massachusetts, (1986).
[45] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Trans. Microwave Theory Tech., 8 (1960) 402–410.
[46] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 (1970) 476–485.
[47] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 (1985) 586–592.
[48] G. Matthaei, E. M. T. Jones and L. Young, “Microwave Filters, Impedance-Matching Networks and Coupling Structures,” McGraw-Hill, New York, (1964).
[49] S. B. Cohn, “Dissipation Loss in Multi-Coupled Resonator Filters,” Proc. IRE, 47 (1957) 1342–1348.
[50] Q. X. Chu and F. C. Chen, “A Compact Dual-Band Bandpass Filter Using Meandering Stepped Impedance Resonators,” IEEE Microw. Wireless. Compon. Lett., 18 (2008) 320–322.
[51] K. C. Gupta , R. Garg, I. Bahl , and E Bhartis , “Microstrip Lines and Slotlines” , Second Edition, Artech House, Boston (1996).
[52] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a 0° Feed Structure,” IEEE Trans. Microwave Theory Tech., 50 (2002) 2362–2367.
[53] L. H. Hsieh, K. Chang, “Tunable Microstrip Bandpass Filters With Two Transmission Zeros,” IEEE Trans. Microwave Theory Tech, 51 (2003) 520–525.
[54] C.M. Tsai, S.Y. Lee, and H.M. Lee, Transmission-Line Filters With Capacitively Loaded Coupled Lines, IEEE Trans Microwave Theory Tech., 51(2003) 1517–1524.
[55] C. F. Tseng, “The Effect CuO Additive on the Microwave Dielectric Properties of Mg(Zr0.05Ti0.95)O3 Ceramics,” J. Alloys Compd., 494 (2010) 252–255.
[56] C. H. Hsu and Y. S. Chang, “Microwave Characteristics of High-Q ZnO-Doped Nd(Co1/2Ti1/2)O3 Dielectric Ceramics,” J. Alloys Compd., 479 (2009) 714–718.
[57] C. L. Huang and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1–xCox)2TiO4 Ceramics,” J. Am. Ceram. Soc., 92 (2009) 379–383.
[58] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectric Ceramics Using (Mg1–xMnx)2TiO4 (x = 0.02~0.1) Solid Solution,” J. Am. Ceram. Soc., 92 (2009) 675–678.
[59] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristic of Ilmenite-Type Titanates with High-Q Values,” Jpn. J. Appl. Phys., 33 (1994) 5466–5470.
[60] C. L. Huang and S. S. Liu, “Low Loss Microwave Dielectrics in the (Mg1–xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91 (2008) 3428–3430.
[61] A. Kan and H. Ogawa, “Influence of Sintering Temperature on Microwave Dielectric Property and Crystal Structure of Corundum-Structured Mg4NbSbO9 Ceramic,” J. Alloys Compd., 468 (2009), 338–342.
[62] H. Ogawa, H. Taketani, A. Kan, A. Fujita, and G. Zouganelis, ”Evaluation of Electronic State of Mg4(Nb2–xSbx)2O9 Microwave Dielectric Ceramics by First Principle Calculation Method,” J. Eur. Ceram. Soc., 25 (2005) 2859–2863.
[63] A. Kan, H. Ogawa, A. Yokoi, and H. Ohsato, “Low-Temperature Sintering and Microstructure of Mg4(Nb2–xVx)2O9 Microwave Dielectric Ceramic by V Substitution for Nb,” Jpn. J. Appl. Phys., 42 (2003) 6154–6157.
[64] I. M. Reaney and D. Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks,” J. Am. Ceram. Soc., 89 (2006) 2063–2072
[65] I. N. Jawahara, P. Mohananb, and M. T. Sebastian, “A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta) Microwave Dielectric Ceramics,” Mater. Lett., 57 (2003) 4043–4048
[66] C. L. Huang, and M. H. Weng, “Liquid Phase Sintering of (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mater. Res. Bull., 35 (2000) 1881–1888.
[67] C. L. Huang, M. H. Weng, and C. C. Wu, “Improved High Q Value of MgTiO3–CaTiO3 Microwave Dielectric Ceramics at Low Sintering Temperature,” Mater. Res. Bull., 36 (2001) 2741–2750.
[68] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta. Cryst., A32 (1976) 751–767.
[69] R. D. Shannon, “Dielectric Polarizabilities of Ions in Oxides and Fluorides,” J. Appl. Phys.,73 (1993) 348–366.
[70] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and S. Kevin, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 (1997) 1885–1888.
[71] B. D. Silverman, “Microwave Absorption in Cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921–1930.
[72] Y. B. Chen, “Microwave Dielectric Properties of [(Mg0.5Zn0.5)0.95Co0.05]2TiO4 Ceramics with BaCu(B2O5) Sintered at Low Temperatures,” J. Alloys Compd., 543 (2012) 125–128.
[73] P. Zhang, Y. Hua, W. Xia, and L. Li, “Effect of H3BO3 on the Low Temperature Sintering and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics,” J. Alloys Compd., 534 (2012) 9–12.
[74] C. X. Chen, S. P. Wu, and Y. X. Fan, “Synthesis and Microwave Dielectric Properties of B2O3-Doped Mg2GeO4 Ceramics,” J. Alloys Compd., 578 (2013) 153–156.
[75] M. He and H. Zhang, “Microwave Properties of Low-Fired Li2ZnTi3O8 Ceramics Doped with CuO–Bi2O3–V2O5,” J. Alloys Compd., 586 (2014) 627–632.
[76] L. Cheng, P. Liu, S. X. Qu, and H. W. Zhang, “Microwave Dielectric Properties of AWO4 (A = Ca, Ba, Sr) Ceramics Synthesized via High Energy Ball Milling Method,” J. Alloys Compd., 581 (2013) 553–557.
[77] S. P. Wu, J. H. Luo, and S. X. Cao, “Microwave Dielectric Properties of B2O3-Doped ZnTiO3 Ceramics Made with Sol–Gel Technique,” J. Alloys Compd., 502 (2010) 147–152.
[78] C. L. Huang, C. H. Su, and C. M. Chang, “High Q Microwave Dielectric Ceramics in the Li2(Zn1–xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) System,” J. Am. Ceram. Soc., 94 (2010) 4146–4149.
[79] C. L. Huang and J. Y. Chen, “Phase Relation and Microwave Dielectric Properties of (Zn1–xCox)Ta2O6 System,” J. Am. Ceram. Soc., 93 (2010) 1248–1251.
[80] C. L. Huang, C. Y. Tai, C. Y Huang, and Y. H. Chien, “Low-Loss Microwave Dielectrics in the Spinel-Structured (Mg1–xNix)Al2O4 Solid Solutions,” J. Am. Ceram. Soc., 93 (2010) 1999–2003.
[81] A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000. pp.86–784.
[82] B. H. Toby, “EXPGUI, a Graphical User Interface for GSAS,” J. Appl. Crystallogr, 34 (2001) 210–213.
[83] C. L. Huang, Y. W. Tseng, J. Y. Chen, and Y. C. Kuo, “Dielectric Properties of High-Q (Mg1–xZnx)1.8Ti1.1O4 Ceramics at Microwave Frequency,” J. Eur. Ceram. Soc., 32 (2012) 2365–2371.
[84] Y. B. Chen, “Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+,” J. Alloys Compd., 513 (2012) 481–486.
[85] T. H. Noh, I. S. Cho, S. Lee, D. W. Kim, S. Park, S. W. Seo, C. W. Lee, and K. S. Hong, “Photophysical and Photocatalytic Properties of Zn3M2O8 (M=Nb, Ta),” J. Am. Ceram. Soc., 95 (2012) 227–231.
[86] N. B. Brese and M. O'Keefe, “Bond-Valence Parameters for Solids,” Acta. Crys., B47 (1991) 192–197.
[87] N. Wakiya, K. Shinozaki, and N. Mizutani, “Estimation of Phase Stability in Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 Using the Bond Valence Approach,” J. Am. Ceram. Soc., 80 (1997) 3217–3220.
[88] E. S. Kim, B. S. Chun, and K. H. Yoon, “Dielectric Properties of [Ca1–x(Li1/2Nd1/2)x]1–yZnyTiO3 Ceramics at Microwave Frequencies,” Mater. Sci. Eng., B99 (2003) 93–97.
[89] H. S. Park, K. H. Yoon, and E. S. Kim, “Effect of Bond Valence on Microwave Dielectric Properties of Complex Perovskite Ceramics,” Mater. Chem. Phys., 79 (2003) 181–183.
[90] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, “Effects of Packing Fraction and Bond Valence on Microwave Dielectric Properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) Ceramics,” J. Eur. Ceram. Soc., 30 (2010) 1731–1765.
[91] E. S. Kim, K. H. Yoon, “Microwave dielectric properties of (1–x)CaTiO3– x(Li1/2Sm1/2)TiO3 ceramics,” J. Eur. Ceram. Soc., 23 (2003) 2397–2401.
[92] D. W. Kim, K. H. Ko, and K. S. Hong, “Influence of Copper(II) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties,” J. Am. Ceram. Soc., 84 (2001) 1286–1290.
[93] C. C. You, C. L. Huang, and C. C. Wei, “Single-Block Ceramic Microwave Bandpass Filters,” Microwave J., 37(1994) 24–35.
[94] S. B. Cohn, “Parallel-Coupled Transmission Line Resonator Filters,” IRE Trans. Microwave Theory Tech., 6 (1958) 223–231.
[95] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpincomb Filters for HTS and Other Narrow-Band Applications,” IEEE Trans. Microwave Theory Tech., 45 (1997) 1226–1231.
[96] J. R. Lee, J. H. Cho, and S. W. Yun, “New Compact Bandpass Filter Using Microstrip λ/4 Resonators with Open Stub Inverter,” IEEE Microwave Guided Wave Lett., 10 (2000) 526–527.
[97] M. Sagawa, K. Takahashi, and M. Makimoto, “Miniaturized Hairpin Resonator Filters and Their Application to Receiver Front-End MICs,” IEEE Trans. Microwave Theory Tech., 37 (1989) 1991–1997.
[98] H. Yabuki, M. Sagawa, and M. Makimoto, “Voltage Controlled Pushpush Oscillators Using Miniaturized Hairpin Resonators,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, 1991, pp. 1175–1178.
[99] S. Caspi and J. Adelman, “Design of Combline and Interdigital Filter with Tapped-Line Input,” IEEE Trans. Microwave Theory Tech., 36 (1988), 759–763.
[100] G. L. Matthaei, “Comb-Line Bandpass Filter of Narrow or Moderate Bandwidth,” IEEE Trans. Microwave Theory Tech., 6 (1963), 82–91.
[101] U. H. Gysel, ”New Theory and Design for Hairpin-Line Filters,” IEEE Trans Microwave Theory Tech 22 (1974), 523–531.
[102] S. Y. Lee and C. M. Tsai, ”New Cross-Coupled Filter Design Using Improved Hairpin Resonators,” IEEE Trans Microwave Theory Tech 48 (2000), 2482–2490.