| 研究生: |
楊正新 Yang, Chen-Hsin |
|---|---|
| 論文名稱: |
一個操作於10Gbs並具有自動阻抗補償功能之串行/解串器 A 10Gbs Serdes Circuit with Auto Impedence Compensation |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 前饋均衡器 、連續時間的線性均衡器 、偽隨機亂數序列 、眼圖 |
| 外文關鍵詞: | digital intensive, eye diagram, feed-forward equalizer (FFE), continuous time linear equalizer (CTLE), pseudo-random binary sequence (PRBS) |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個可以自動補償功能的電路 ( A 10Gbs Serdes Circuit with Auto Impedence Compensation),主要用於傳輸大量資料的傳輸裝置。並可以適用於不同Loss的PCB板長度並增加訊號的辨識度 和品質 進而 減少 Rx 端的負擔。在 過去論文的架構裡,常常都是 補償在 固定的 Loss 環境 ,但是當 Loss 改變時,常常造成訊號品質的不佳,所以本論文中加了偵測 Loss 變化的 Monitor,可以隨著Loss的改變而更改成不同的補償,以達到訊號品質的最佳化,並讓Rx端的電路減少負擔。
FFE Feed Forward Equalizer經過了分析後採用了架構為2 tap的 FFE Driver則是 採用SST(Source Series Terminated) 架構使用 2 Tap是因為低功耗以及通道的衰減的考量,所以設定為這個的數量,此外為了讓整個系統更低功耗 且更容易切換不同的補償,用了跟一般傳統D river 不一樣的電路,使用了經過改版後的SST Source Series Terminated Driver ,此為數位控制的Driver,主要利用PMOS和 NMOS中的開和關,來達到不同的DC準位。其傳輸端最高承受的 Loss 為 25dB的通道 (FR4 材質)。而 Monitor 方面使用了BER(Bit Error Rate)的量測方式,驗證所提出Auto Detected的訊號正確率比傳統在 Tx端固定補償的方式來的高。此晶片已透過TSMC 90nm 1P6M CMOS Process 製作,核心面積為 1.1190 mm 2 。
由量測結果顯示,在供應電壓1V下,其功率消耗為15.8 mW,技術指標(Figure of Merit, FoM)則為1.58 pJ/b。
This paper presents the design of a 10 Gb/s serial link transmitter with both 2 tap feed forward equalizer (FFE) and capaci tance monitor, and then it improve the performance of the equalization system in the transmitter. This design includes low power FFE that use s source series terminated (SST) driver and low power design with a small amount of tap. In addition to FFE, this transmitter includes an impedance detector to auto detect the channel loss. The FFE can know the different board losses in advance to compensate for the signal at the t ime and improve the signal quality on the board with different losses . The proposed transmitter is fabricated in TSMC 90 nm technology. The transmitter achieves 10 Gb/s maximum data rate under the chip on board assembly. It can withstand the loss of up to 25 dB. The eye width measured is 0.63 UI in 25 dB loss. The measured energy efficiency of the transmitter was 1.58 pJ/b. The transmitter consumes 15.8 mW, wherein the power supply is 1.0 V and the input CLK signal frequency is 5 GHz.
[1] Wikipedia, https://zh.wikipedia.org/wiki/PCI_Express
[2] Wikipedia, https://zh.wikipedia.org/wiki/SATA
[3] Wikipedia, https://zh.wikipedia.org/wiki/USB
[4] Wikipedia, https://zh.wikipedia.org/wiki/HDMI
[5] Wikipedia, https://en.wikipedia.org/wiki/Intersymbol_interference
[6] IEEE 802.3ae-2002-IEEE Standard for Information technology - Local and metropolitan area networks - Part 3: CSMA/CD Access Method and Physical Layer Specifications - Media Access Control (MAC) Parameters, Physical Layer, and Management Parameters for 10 Gb/s Operation.
https://standards.ieee.org/standard/802_3ae-2002.html
[7] J. Y. Chang., et al., “A 15-20GHz Delay-Locked Loop in 90nm CMOS Technology,” IEEE Asia Solid-state Circuits Conf. Dig. Tech. Papers, Nov 2008, pp. 213–216.
[8] R. Inti., et al., “A 0.5-to-0.75V, 3-to-8 Gbps/lane, 385-to-790 fJ/b, bi-directional, quad-lane forwarded-clock transceiver in 22nm CMOS,”IEEE Symp. VLSI Circuits, Feb. 2015, pp.346-347.
[9] P. Wei Chiu., et al., “A 65-nm 10-Gb/s 10-mm On-Chip Serial Link Featuring a Digital-Intensive Time-Based Decision Feedback Equalizer,” IEEE J. Solid-State Circuits (JSSC), vol. 53, no. 4, pp. 1203-1213, Apr. 2018.
[10] M. Kuczyska., et al., "Development of low-power high speed (10Gb/s) drivers in CMOS 130 nm technology," in Mixed Design of Integrated Circuits & Systems (MIXDES), 2015 22nd International Conference, Torun, 2015, pp. 318-323.
[11] Po-Hui Yang., et al.,”A High-Performance 128-to-1 CMOS Muitiplexer tree,” 2012 IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2012), November 2012, pp.4-7.
[12] M. Kossel., et al., “A T-coil-enhanced 8.5 Gb/s high-swing SST transmitter in 65 nm bulk CMOS with < –16 dB return loss over 10 GHz bandwidth,” IEEE J. Solid-State Circuits(JSSC), vol. 43, no. 12, pp. 2905–2920, Dec. 2008.
[13] Y.-H. Song., et al., “An 8-to-16Gb/s 0.65-to-1.05pJ/b 2-tap impedance-modulated voltage-mode transmitter with fast power-state transitioning in 65nm CMOS,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 446–447.
[14] Mohammad Hekmat., et al., “A 6Gb/s 3-Tap FFE Transmitter and 5-Tap DFE Receiver in 65nm/0.18µm CMOS for Next Generation 8K Displays,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 402–403.
[15] A. Ramachandran and T. Anand., et al.,“A 0.5-to-0.9V, 3-to-16Gb/s, 1.6-to 3.1pJ/b wireline transceiver equalizing 27dB loss at 10Gb/s with clock domain encoding using integrated pulse-width modulation (IPWM) in 65nm CMOS,” in IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 268–270.
[16] A. Manian and B. Razavi, “A 40-Gb/s 14-mW CMOS wireline receiver,” IEEE J. Solid-State Circuits(JSSC), vol. 52, no. 9, pp. 2407–2421, Sep. 2017.
[17] Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits(JSSC), vol. 42, no. 9, pp. 1999–2011, Sep. 2007.
[18] Z.-H. Hong, Y.-C. Liu, and W.-Z. Chen, “A 3.12 pJ/bit, 19–27 Gbps receiver with 2-tap DFE embedded clock and data recovery,” IEEE J. Solid-State Circuits(JSSC), vol. 50, no. 11, pp. 2625–2634, Nov. 2015.
[19] P. S. Sahni., et al., “An Equalizer with Controllable Transfer Function for 6-Gb/s HDMI and 5.4-Gb/s DisplayPort Receivers in 28-nm UTBBFDSOI,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 24, no. 8, Mar. 2016, pp. 2803 - 2807.
[20] Aghighi, A., et al., “A 10-Gb/s low-power low-voltage CTLE using gate and bulk driven transistors,” IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), Monte Carlo, December 2016, pp. 217–220.
校內:2025-01-15公開