簡易檢索 / 詳目顯示

研究生: 郭峰豪
Kuo, Feng-Hao
論文名稱: 細泥漿體與顆粒混合漿體時變性流變關係之研究
The Study on the Time-dependent Rheological Relations of Fine Slurries and the Mixtures of Particle and slurry
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 196
中文關鍵詞: 時變性流變關係細泥漿體顆粒混合漿體
外文關鍵詞: time-dependent rheological relations, fine slurries, the particle-slurry mixtures
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中,大量的泥、砂、礫石與水混合所形成之泥漿體的流動情況,為許多工程領域上極為重要的議題之一。泥漿體於流動過程中,漿體所承受之剪應力及其剪切率之關係會直接影響其外在的流動行為,因此在分析漿體之流動特性之前需先了解其流變特性。前人研究顯示,自然界中的泥漿體因其土體的細顆粒及其化學成份影響,使得泥漿體在固定剪切率作用下,其剪應力會隨著時間增加而持續遞減,最後達到一穩定的平衡狀態;此種隨著受剪時間而變動的流變特性稱之為觸變特性。因此,探討並瞭解泥漿體在不同受剪歷程下之觸變特性,可助於了解泥漿體之流動特性,並可作為不同工程於設計或施工之參考(如混凝土灌漿施工、高含砂泥漿抽取、鑽探之泥漿體輸送等等)。
    為了分析泥漿體流變之時變特性,本文以剪應力、剪切率及受剪時間之三維曲面概念,探討泥漿體之時變性流變關係,進行一系列不同條件之流變實驗(不同剪切率設定實驗比對、不同體積濃度、漿體溫度、pH值以及不同顆粒混合條件),以探討細泥漿體及顆粒混合漿體之時變性流變關係。矽油標準液、Carbopol漿體及高嶺土漿體等三種漿體在不同剪切率實驗條件(固定剪切率、增加剪切率及剪切率先增加而後遞減)之比對結果顯示,固定剪切率實驗所量測之剪應力、剪切率及受剪時間資料可有效描述該泥漿體在不同剪切率增加(或遞減)條件下之量測結果,此表示應用固定剪切率量測結果所建立起剪應力-剪切率-受剪時間之三維曲面,可描述泥漿體在不同受剪歷程下之時變性流變關係。本文並提出一數學方程式來描述此一曲面,以進一步探討不同條件下泥漿體屈服應力及黏滯度之時變特性。
    本文探討不同體積濃度、漿體溫度及pH值條件下高嶺土泥漿體之時變性流變關係。分析結果顯示,泥漿體起始受剪時的屈服應力、黏滯度以及流變關係達平衡時黏滯度均會隨著體積濃度增加而明顯增加,而且起始受剪時與平衡時之屈服應力差值及黏滯度差值會隨著體積濃度的增加而增加。不同漿體溫度條件下之分析結果顯示,除了平衡時之屈服應力會隨著漿體溫度的降低而略為增加之外,其他之流變參數差異並不明顯。在不同pH值之影響分析結果顯示,硝酸溶液所調配之高嶺土泥漿體,其pH值愈小,高嶺土漿體之黏滯度會大幅增加,然而不同pH值漿體之應力遞減速率差異不大。本文並根據不同體積濃度、漿體溫度及pH值泥漿體之分析結果,探討細泥漿體之流變參數之時變特性,結果發現泥漿體屈服應力與黏滯度均會隨受剪時間而遞減,而且屈服應力之遞減速率明顯較黏滯度快許多。本文進一步與前人所提出觸變模式中流變參數之時變特性進行比較,結果顯示韓文亮(1991)所提出之觸變模式與本文所得到低剪切率情況下( 8 s-1)之時變性流變特性較為相近。
    不同粗顆粒混合漿體之時變性流變關係探討方面,本文首先比對顆粒混合漿體及細泥漿體之應力鬆弛特性,而後藉由所分析出之流變參數探討不同受剪時間及剪切率情況下之流變關係。應力鬆弛特性比較結果顯示細泥漿體於起始受剪時,其剪應力先隨受剪時間快速地遞減,而後遞減速率逐漸變慢,最後達到穩定情況;顆粒混合漿體之剪應力則隨受剪時間穩定而緩慢遞減,顯示顆粒混合漿體與細泥漿體之時變性流變特性有明顯的差異。顆粒混合漿體之流變參數分析結果顯示,顆粒混合漿體之屈服應力及黏滯度會隨著顆粒濃度的增加而增大;而在顆粒濃度大於15 %以上時,起始受剪時之屈服應力及黏滯度則會隨顆粒粒徑的變小而增大,平衡時之屈服應力及黏滯度則會隨著顆粒粒徑的變大而增大。此外,顆粒混合漿體於高剪切率之剪應力會出現較明顯之擾動現象,使得量測結果較無法得到明確之定量分析。本文並根據剪切率高低及受剪時間的長短,將顆粒混合漿體之剪應力-剪切率-受剪時間曲面區分為四個區域,並探討不同區域之流變特性差異,以瞭解顆粒混合漿體於不同受剪情況下可能之流變特性及影響。

    The flow conditions of the slurries mixed by abundant water and mud, sands or gravels are very important to many engineering fields. The relations of shear stress and shear rate of slurries when they flow would directly influence their flow conditions. Therefore, the relations of shear stress with shear rate, which is called the rheological property, have to be analyzed first before understanding the flow conditions of these slurries. Based on the previous studies, because of the structures of the fine particles and the chemical ingredients effect of the slurries, the shear stress of slurries would continuously decrease with sheared time when the slurries were sheared by a constant shear rate, and then reach equilibrium state. This time-dependent rheological property is called thixotropy. Therefore, the discussion and understanding the rheological properties after different shearing histories would be important to analyze the flow characteristics of the slurries under different flow conditions, and also could provide as a reference to different practical engineering plans or designs. (i.e. the concrete, the hyper-concentrated flow or the mining mud)
    For analyzing this time-dependent rheological property of slurries, this study conducted a series of experiment under different conditions (different shear-rate settings, different volumetric concentrations, temperatures, pH values and the different particle-slurry mixtures), and applied the 3D surface of the shear stress, shear rate and sheared time to analyze the time-dependent rheological characteristics of slurries and the particle-slurry mixtures. Based on the comparisons of the measured data of constant shear-rate, increasing shear-rate and hysteresis loop experiments of silicone standard fluid, Carbopol slurry and kaolin slurry, we found that shear stress, shear rate and sheared time data of the constant shear-rate experiments could effectively depict their measured results of different increasing (or decreasing) shear-rate setting experiments. This result also shows that the 3D surface of the shear stress, shear rate and sheared time could be applied to describe the time-dependent rheological relations of slurries by different shearing histories. Therefore, this study proposed an equation to simulate this 3D surface, for analyzing the time-dependent properties of yield stress and viscosity parameters of different slurries.
    This study analyzed the time-dependent rheological parameters of the kaolin slurries at the treatment of different concentrations, temperatures and pH values. The results show that both of the yield stress and viscosity of slurries at the state of starting to be sheared, and viscosity of slurries at equilibrium state would increase with the concentrations. The differences between at the state of starting to be sheared and at the equilibrium state for both yield stress and viscosity would also increase with concentrations. The rheological properties of the slurries at different temperatures show that the yield stress at equilibrium state would slightly increase at a lower temperature, but the differences of the other rheological parameters could not be obviously observed. The viscosity of the kaolin slurries mixed by nitric acid would decrease as the pH values. However, the decreasing rates of shear stress with time of the slurries under different pH values are similar. Based on the analyzed results of these slurries by different conditions, the time-dependent rheological behaviors of fine slurries were also discussed. Both of the yield stress and viscosity of slurries would decrease with sheared time, but the decreasing rate of yield stress is much faster than the decreasing rate of viscosity. The time-dependent setting of these rheological parameters in previous thixotropic models was also compared, and the result showed the time-dependent settings of the rheological parameters in the thixotropic model proposed by Han (1991) are similar to the time-dependent rheological behaviors at low shear rate( 8 s-1) in this study.
    This study also compared the stress relaxation characteristics of the fine slurries and the particle-slurry mixtures then analyzed the rheological parameters of particle-slurry mixtures, for discussing the time-dependent rheological relations of different particle-slurry mixtures. The comparison of stress relaxation characteristics shows that the shear stress of fine slurries would decrease rapidly with sheared time at the first, and then gradually reach the equilibrium state, while the shear stress of the particle-slurry mixtures is decreasing gradually and steadily with time. Both of the yield stress and viscosity of particle-slurry mixtures would increase as the particle concentrations. When the particle concentration is larger than 15 %, the yield stress and viscosity of particle-slurry mixtures would decrease with the particle diameters at the state of starting to be sheared, and would increased with the particle diameters at equilibrium state. Beside, the shear stress of particle-slurry mixtures showed an obviously scatter behaviors at a high shear-rate condition, so that the rheological parameters could not be clearly defined. This study also classified the rheological characteristics of the particle-slurry mixtures into four different rheological zones, based on their shear rates and sheared time, for understanding the possible rheological properties and their effects under different shearing histories.

    目錄 I 圖目錄 IV 表目錄 IX 符號表 X 第一章 緒論 1-1 1.1 前言 1-1 1.2 泥漿體觸變特性之形成原因 1-4 1.2.1 水體的影響 1-4 1.2.2 泥沙的條件 1-6 1.3 常見的流變特性量測方法 1-8 1.3.1 固定剪切率 1-8 1.3.2 增加剪切率 1-9 1.3.3 變化剪切率 1-11 1.4 常見之流體流變行為及模式 1-14 1.4.1 與時間無關之流變模式 1-15 1.4.2 與時間相關之觸變模式 1-18 1.5 流漿體流變特性之研究回顧 1-25 1.6 研究動機 1-32 1.7 本文組織架構 1-33 第二章 流變實驗設備及方法 2-1 2.1 實驗儀器 2-1 2.2 實驗材料 2-5 2.3 實驗方法及步驟 2-12 第三章 泥漿體剪應力、剪切率及受剪時間關係之探討 3-1 3.1 不同漿體之剪應力-剪切率-受剪時間3D曲面 3-2 3.2 不同剪切率設定方法量測結果之比較 3-6 3.3 泥漿體時變性流變關係式之建立及驗證 3-12 3.4 剪應力、剪切率及受剪時間關係式之探討 3-19 第四章 不同濃度、溫度及pH值泥漿體之時變性流變特性 4-1 4.1 不同濃度漿體之時變性流變特性 4-2 4.1.1 不同濃度漿體之起始及平衡流變特性比較 4-6 4.1.2 不同濃度漿體之流變參數分析 4-10 4.2不同溫度漿體之時變性流變特性 4-17 4.2.1 不同溫度漿體之起始及平衡流變特性比較 4-19 4.2.2 不同溫度漿體之流變參數分析 4-23 4.3 不同pH值漿體之時變性流變特性 4-28 4.3.1 不同pH值漿體之起始及平衡流變特性比較 4-31 4.3.2 不同pH值漿體之流變參數分析 4-35 4.4 細泥漿體時變性流變特性之探討 4-39 4.5 小結 4-40 第五章 粗顆粒混合漿體之時變性流變特性 5-1 5.1 顆粒混合漿體與細泥漿體之應力鬆弛特性比較 5-3 5.2 不同顆粒濃度混合漿體之流變參數探討 5-7 5.3 不同顆粒粒徑之影響分析 5-19 5.4 顆粒混合漿體之時變性流變特性分區 5-27 5.5 小結 5-29 第六章 結論與建議 6-1 6.1 結論 6-1 6.2 建議 6-2 參考文獻 A-1 附錄一 Nelder and Mead最佳化演算法 附錄二 不同條件下泥漿體之應力鬆弛曲線及固定受剪時間流型曲線

    1. 王裕宜、詹錢登、嚴璧玉(2001),「泥石流體結構和流變特性」,湖南科學技術出版社。
    2. 王裕宜、詹錢登、韓文亮、鄒仁元(2003),「粘性泥石流體應力本構關係之試驗研究」,自然災害學報,第12卷,第二期,第64-70頁,中國。
    3. 王裕宜(2006),「粘性泥石流體的應力應變特徵和應力本構關係之研究」,山地學報,第24卷,第5期,第555-561頁。
    4. 王志賢(2007),「泥砂顆粒組成對黏性土石流體流變參數影響之研究」,國立成功大學水利及海洋工程研究所博士論文。
    5. 王志賢(2000),「粗顆粒材粒對土石流體流變特性影響之實驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
    6. 沙玉清(1996),「泥沙運動學引論」,陝西科學技術出版社。
    7. 沈壽長(1998),「土石流流變特性的試驗研究」,水利學報,第9期,第7-13頁,中國。
    8. 倪至寬、林任峰(2006),「超細水泥漿液滲透灌漿模式之研究」,第五屆海峽兩岸隧道與地下工程學術與技術研討會,A25-1 – A25-14,台北。
    9. 郭啟文(2002),「泥漿體及礫石泥漿體之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
    10. 吳積善、康志成、田連權、章書成(1990),「雲南蔣家溝土石流觀測研究」,科學出版社,北京。
    11. 詹錢登(2000),「土石流概論」,科技圖書股份有限公司。
    12. 詹錢登、余昌益、吳雲瑞(1997),「含砂濃度對含砂水體流變參數的影響之初步研究」,第一屆土石流研討會論文集,第179-190 頁,台灣。
    13. 詹錢登、張雅雯、郭峰豪、羅偉誠(2009),「固體顆粒對賓漢流體流變參數之影響」,中華水土保持學報,第40卷,第1期,第95-104頁。
    14. 詹錢登、郭峰豪、郭啓文(2009),「泥漿體應力鬆弛特性之實驗研究」,農業工程學報,第55卷,第3期,第65-74頁。
    15. 詹錢登、余昌益、吳雲瑞(1997),「含砂濃度對含砂水體流變參數的影響之初步研究」,第一屆土石流研討會論文集,第179-190 頁,台灣。
    16. 張雅雯(2008),「固體顆粒和Carbopol 940漿體混合後之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
    17. 蔡孟芳(2009),「非均勻固體顆粒對賓漢流體流變參數之影響」,國立成功大學水利及海洋工程研究所碩士論文。
    18. 錢寧、萬兆惠(1983),「泥砂運動力學」,科學出版社,北京。
    19. 余昌益(1996),「高含砂水流流變參數之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    20. 韓文亮(1991),「細顆粒漿體的應力鬆弛模型」,泥砂研究,第3期,第87-92頁,中國。
    21. 費祥俊(1983),「高含砂水流的顆粒組成及流動特性」,第二屆河流泥砂國際學術研討會,第296-308頁。
    22. 費祥俊(1993),「黃河中下游含沙水流粒度的計算模型」,黃河高含沙水流運動規律及應用前景,科學出版社,第1-19頁,中國。
    23. 費祥俊(1994),「漿體與粒狀物料輸送水力學」,清華大學出版社,中國。
    24. Alessandrini, A., Caufin, B., Lapasin, R, and Papo, A. (1985), “Phenomenologi- cal description of the thixotropic behavior of gypsum plaster pastes, Rheologica Acta, Vol. 24, pp.617-622.
    25. Barnes, H. A., Hutton, J. F., and Walters, K. (1989), “An Introduction to Rheology”, Elsevier.
    26. Barnes, H. A. (1997), "Thixotropy—a review", Journal of Non-Newtonian Fluid Mechanics, Vol. 70, No.1-2, p.1-33.
    27. Bagnold, R. A. (1954), “Experiments on a gravity-free dispersion of large solid sphers in a Newtonian fluid under shear,” Proc. of the Royal Society of London, A255, pp. 49-63.
    28. Baudez, J. C. (2006), “About peak and loop in sludge rhegrams”, Journal of Environmental Management, Vol. 78, pp. 232-239.
    29. Baravian, C., Quemada, D., and Parker, A. (1996), “Modelling thixotropy using a novel structural kinetics approach: basis and application to a solution of iota carrageenan.” Journal of Texture Studies, Vol. 27, pp.675-687.
    30. Bekkour, K., Leyama, M., Benchabane, A., and Scrivener, O. (2005), “Time-dependent rheological behavior of bentonite suspensions: An experimental study.” Journal of Rehology, Vol. 49, No. 6, pp. 105-124.
    31. Briggs, J. L. and Steffe, J. F. (1997), “Using Brookfield data and the Mitschka method to evaluate power law foods.” Journal of Texture Studies, Vol. 28, pp. 517-522.
    32. Cheng, D. C. H. and Evans, F. (1965), “Phenomenological characterization of rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids.” British Journal of Applied Physics, Vol. 16, pp. 1599-1617.
    33. Contreras, S. M. and Davies, T. R. H. (2000), “Coarse-grained debris-Flows: Hysteresis and Time-Dependent Rheology.” Journal of Hydraulic Engineering, Vol. 126, No. 12, pp. 938-941.
    34. Coussot, P. and Boyer, S. (1995), “Determination of yield stress fluid behaviour from inclined plane test.” Rheologica Acta, Vol. 34, No. 6, pp. 534-543.
    35. Coussot, P. and Piau, J. (1994), "On the behavior of fine mud suspensions." Rheologica Acta, Vol. 33, No. 3, pp. 175-184.
    36. Coussot, P. and Piau, J. M., (1995a), “The effects of an addition of force-free particles on the rheological properties of fine suspensions.” Canadian Geotechnical Journal, Vol. 32, pp. 263-270.
    37. Coussot, P. and Piau, J. M., (1995b), “A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions.” Journal of Rheology, Vol. 39, No. 1, pp. 105-124.
    38. Coussot, P. (1997), “Mudflow Rheology and Dynamics.” International Association for Hydraulic Research, Netherlands.
    39. Coussot, P., Laigle, D., Arattano, M., Deganutti, A., and Marchi, L. (1998), “Direct determination of rheological characteristics of debris flow.” Journal of Hydraulic Engineering, Vol. 124, No. 8, pp. 865-868.
    40. Coussot, P., Nguyen, Q. D., Huynh, H. T., and Bonn, D. (2002). "Avalanche behavior in yield stress fluids." Physical review letters, Vol. 88, No. 17, 175501-1-175501-4.
    41. Cross, M. M. (1965), “Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems.” Journal of Colloid and Interface Science, Vol. 20, pp. 417-437.
    42. De Kee, D., Code, R. K., and Turcotte, C. (1983), “Flow properties of time-dependent foodstuffs.” Journal of Rheology, Vol. 27, pp. 581-604.
    43. Dullaert, K. and Mewis, J. (2006), “A structural kinetics model for thixotropy.” Journal of Non-Newtonian Fluid Mechanics, Vol. 139, pp. 21-30.
    44. Elliott, J. and Ganz, A. J. (1971), “Modification of food characteristics with cellulose hydrocolloids. I. Rheological characterization of an organoleptic property, Journal of Texture Studies, Vol. 2, pp. 220-229.
    45. Faas, W. R. (1990), “A portable rotational viscometer for field and laboratory analysis of cohesive sediment suspensions.” Journal of Coastal Research, Vol. 6, No. 3, pp. 735-738.
    46. Ferguson, J., Hudson, N. E., and Odriozola, M. A. (1997), “The interpretation of transient extersional viscosity data.” Journal of Non-Newtonian fluid Mechanics. Vol. 68, pp. 241-257.
    47. Green, H. and Weltman, H. N. (1943), “Thixotropic behavior of oils.” Ind. Eng. Chem. Anal. 15, pp. 424-429.
    48. Hampton, M.A. (1975), “Competence of fine-grained debris flows.” Journal of Sedimentary Petrology, Vol. 45, No. 4, pp. 834-844.
    49. Hübl, J. and Steinwendtner, H. (2000), “Estimation of rheological properties of viscous debris flow using a belt conveyor.” Phys. Chem. Earth(B), Vol. 25, No. 9 , pp. 751-755.
    50. Hanes, D. M., and Inman, D. L. (1985), “Observations of rapidly flowing franular-fluid materials.” Journal of Fluid Mechanics, Vol. 150, pp. 357-380.
    51. Ibanoglu, S. and Ibanoglu, E. (1998), ”Rheological characterization of some traditional trukish soups.” Journal of Food Engineering, Vol. 35, pp. 251-256.
    52. Jan, C. D. and Shen, H. W. (1993), “A review of debris flow analysis” Proceeding XXV Congress, IAHR, Vol. 3, pp. 25-31.
    53. Jan, C. D., Wang, Y. Y., and Han, W. L. (2000), “Resistance reduction of debris-flow due to air entrainment.” Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei, pp. 369-372.
    54. Johnson, A. M. (1970), “Physical Processes in Geology.” Freeman, Cooper and Company, pp. 431-571.
    55. Julien, P. Y. and Lan, Y. (1991), “Rheology of hyperconcentrations.” Journal of Hydraulic Engineering, Vol. 117, No. 3, pp. 346-353.
    56. Kirkwood, D. H. and Ward, P. J. (2008), “Comment on the power law in rheological equations.” Materials Letters, Vol. 62, pp. 3981-3983.
    57. Mahaut, F., Mokeddem, S., Chateau, X., Roussel, N., and Ovarlez, G.. (2008), “Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials.” Cement and Concrete Research, Vol. 38, pp. 1276-1285.
    58. Major, J. J. and Pierson, T. C.(1992), “Debris flow rheology: experimental analysis of fine-frained slurries.” Water Resources Research, Vol. 28, No. 3, pp. 841-857.
    59. Martino, R. (2003), “Experimental analysis on the rheological properties of a debris flow deposit.” Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation, Davos, Switzerland, pp. 363~371.
    60. Malet, J.P., Remaîtrea, A., and Maquaire, O., Ancey, C., and Locat, J. (2003), “Flow susceptibility of heterogeneous marly formations: implications for torrent hazard control in the Bacelonnete basin.” Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation, Davos, Switzerland, pp. 351-362.
    61. Mangesana, N., Chikuku, R. S., Mainza, A. N., Govender, I. van der Westhuizen, A. P., and Narashima, M.(2008), “The effect of particle sizes and solids concentration on the rheology of silica sand based suspensions” The Journal of The Southern African Institute of Mining and Metallurgy”, Vol. 108, pp. 237-245.
    62. Mitschka, P. (1982), “Simple conversion of Brookfield R.V.T. readings into viscosity functions”, Rheological. Acta, Vol.21, pp.207-209.
    63. Moore, F. (1959), “The rheology of ceramic slips and bodies.” Transactions of the British Ceramic Society, Vol. 58, pp. 470-484.
    64. Mujumdar, A., Beris, A. N., and Metzner, A. B. (2002), “Transient phenomena in thixotropic systems.” Journal of Non-Newtonian Fluid Mechanics, Vol. 102, pp. 157-178.
    65. Nitakawi, Y., Wada, K., and Egashira, K. (1981), “Particle-particle and particle-water interactions in aqueous clay suspensions. Part II. Viscosity data and interpretation.” Clay Science, Vol. 5, pp. 319-331.
    66. Neaman, A. and Singer, A. (2000), “Rheological properties of aqueous suspensions of palygorskite.” Soil Science Society of America Journal, Vol. 64, pp. 427-436.
    67. O’Brien, J. S. and Julien, P. Y.(1988), “Laboratory analysis of mudflow properities,” Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 8, pp. 877-887
    68. Perret, D., Locat, J., and Martignoni, P. (1996), "Thixotropic behavior during shear of a fine-grained mud from Eastern Canada." Engineering Geology, Vol. 43, No. 1, pp. 31-44.
    69. Permien, T. and Lagaly, G. (1995), “The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmorillonite and surfactants.” Clays and Clay Minerals, Vol. 43, No. 2, pp. 229-236.
    70. Phan-Thien, N., Safari-Ardi, M., and Morales-Patino, A. (1997), “Oscillatory and simple shear flows of a flour – water dough: a constitutive model.” Rheol. Acta, Vol. 36, pp. 56-65.
    71. Phillips, C. J. and Davies, T. R. H. (1991), “Determining rheological parameter of debris flow material.” Geomorphology, Vol. 4, pp. 101-110.
    72. Roussel N., Le Roy, R., and Coussot, P. (2004), “Thixotropy modelling at local and macroscopic scales.” Journal of Non-Newtonian Fluid Mechanics, Vol. 117, No. 2-3, pp. 85-95.
    73. Roussel N. (2006), “A thixotropy model for fresh fluid concretes: Theory, validation and applications.” Cement and Concrete Research, Vol. 26, pp. 1797-1806.
    74. Scott-Blair, G. W. (1943), “A Survey of General and Applied Rheology”, Pitman, London.
    75. Savage, S. B. and McKeown, S.(1983), “Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders,” Journal of Fluid Mechanics, Vol. 127, pp. 453-472.
    76. Savage, S. B. and Sayed, M.(1984), “Stresses developed by dry cohesionless granular materials sheared in an annular shear cell,” Journal of Fluid Mechanics, Vol. 142, pp. 391-430.
    77. Schatzmann, M., Fisher, P., and Bezzola, G. R. (2003), “Rheological behavior of fine and large particle suspensions.” Journal of Hydraulic Engineering, Vol.129, No.10, pp.796-803.
    78. Schatzmann, M. (2005), “Rheometry for large particle fluids and debris flow.” PhD. Thesis, Swiss Federal Institute of Technology Zurich.
    79. Slibar, A. and Paslay, P. R. (1959), “Retarded flow of Binham materials.” Journal of Applied Mechanics, Vol.26, pp. 107-113.
    80. Slibar, A. and Paslay, P. R. (1964), “On the technical description of the flow of thixotropic materials.” Proceeding of International Symposium on Second Order Effects in Elasticaity, Plasticity and Fluid Dynamics 1, pp. 314-330.
    81. Suetsugu, Y. and White, J. (1984), “A theory of thixotropic plastic viscoelastic fluids with a time-dependent yield surface and its comparison to transient and steady state experiments on small particle filled polymer melts.” Journal of Non-Newtonian Fluid Mechanics, Vol. 14, pp. 121-140.
    82. Takahashi, T. (1978), “Mechanical characteristics of debris flow.” Journal of Hydraulic Engineering, Vol. 104(HY8), pp. 1153-1169.
    83. Tiu, C. and Boger, D. V. (1974), “Complete rheolgical characterization of time dependent food products, Journal of Texture Studies, Vol. 5, pp. 328-338.
    84. Toorman, E. A. (1997), “Modeling the thixotropic behavior of dense cohesive sediment suspensions.” Rheol. Acta, Vol. 36, pp. 56-65.
    85. Tsutsumi, A. and Yoshida, K. (1987), “Effect of temperature on rheological properties of suspensions.” Journal of Non-Newtonian Fluid Mechanics, Vol. 26, pp. 175-183.
    86. Worrall, W. E. and Tuliani, S. (1964), “Viscosity changes during the aging of clay-water suspensions.” Trans. Brit. Ceramic Soc. Vol. 63, pp. 167-185.

    下載圖示 校內:2011-07-23公開
    校外:2011-07-23公開
    QR CODE