簡易檢索 / 詳目顯示

研究生: 葉英傑
Yeh, Ying-Chieh
論文名稱: 車型機器人全自主停車與追蹤模糊控制器設計
Design of Autonomous Fuzzy Controllers of Car-Like Mobile Robots for Parking and Tracking
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 80
中文關鍵詞: 車型機器人模糊停車控制器滑動模式動態控制器
外文關鍵詞: Car-Like Mobile Robot, Fuzzy Parking Controller, Sliding-Mode Dynamic Controller
相關次數: 點閱:97下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一車型機器人的動態模型並設計四種控制器,包含模糊停車控制器,滑動模式動態控制器、適應性滑動模式動態控制器及適應性模糊滑動模式動態控制器,以完成自動停車或軌跡追隨的任務。模糊停車控制器能有效地讓車型機器人停到它所偵測出的停車格當中,其餘三個動態控制器也都能讓車型機器人達成軌跡追隨的任務並驗證所提出之車型動態模型的可行性及有效性。模糊停車控制器係整合超音波感測器所偵測到的環境資訊及搭配雙耳法定位功能,使車型機器人能辨識出停車格與障礙物位置,並避障以保證停車的安全性。接著為了確保車型機器人的穩定性,本論文藉由李亞普諾夫穩定性理論,證明基於車型機器人動態模型所提之三個動態控制器在系統參數不確定及外部擾動的影響下,仍能完成軌跡追隨之目的。最後,實驗結果證實模糊停車控制器可有效地執行停車任務,而電腦模擬結果顯示所設計之動態控制器可有效地控制車型機器人完成軌跡追隨之任務。

    This dissertation proposes a dynamic model of car-like mobile robot (CLMR) and presents four dynamic controllers, which including the fuzzy parking controller, sliding-mode dynamic controller, adaptive sliding-mode dynamic controller, and adaptive fuzzy sliding-mode dynamic controller. The controllers are utilized to accomplish the parking or trajectory tracking missions. The fuzzy parking controller can make the CLMR to park effectively in the detected parking space, and the other three dynamic controllers can perform the trajectory tracking task and verify the availability of proposed CLMR dynamic model. By integrating the obtained surrounding information of the robot from ultrasonic sensor data and adopting the binaural approach, the CLMR can recognize the parking space and obstacle position in the experimental environments. Additionally, the fuzzy parking controller can ensure the ability of the CLMR to withstand collision in order to guarantee safe parking. Furthermore, base on the proposed dynamic model of CLMR, the three dynamic controllers are presented to reduce the effect of the external disturbances and system uncertainties of the CLMR, and to accomplish the trajectory tracking task. This dissertation also proves the stability of the CLMR with these three dynamic controllers by the Lyapunov stability theory. Finally, the practical experiments demonstrate that the proposed fuzzy parking controller is feasible and effective and the simulation results validate the effectiveness of the three proposed dynamic controllers.

    中文摘要 I Abstract II Acknowledgement III Contents IV List of Acronyms VII Nomenclature VIII List of Figures XI List of Tables XV Chapter 1 Introduction 1 1.1 Preliminary 1 1.2 Dissertation Organization 7 Chapter 2 Multi-Functional Autonomous Parking Controllers for Car-Like Mobile Robot 8 2.1 Introduction 8 2.2 Ultrasonic Sensing System for the CLMR 9 2.2.1 The Arrangement of the Ultrasonic Sensors Array 9 2.2.2 Firing Interval of the Ultrasonic Sensors Array 10 2.2.3 Position Calculation of a Reflector by the Binaural Method 11 2.2.4 Determination of Different Type of Reflectors by Binaural Method 13 2.3 Fuzzy Logic Control Design and Behavior Modes of the CLMR 14 2.3.1 Fuzzy Wall-Following Controller 14 2.3.1.a Design of Right-Side FWFC 16 2.3.1.b Speed Control of FWFC 17 2.3.2 Fuzzy Parallel-Parking Mode 19 2.3.3 Fuzzy Garage-Parking Mode 22 2.3.4 Obstacle Avoidance Mode 25 2.4 Control Behavior Fusion Design 26 2.5 Experimental Results 29 2.6 Summary 36 Chapter 3 Adaptive Fuzzy Sliding-Mode Controller of Car-Like Mobile Robot for Trajectory Tracking 37 3.1 Introduction 37 3.2 Kinematics Trajectory Tracking Control for the CLMR 38 3.3 Dynamic Controller Design for the CLMR 42 3.3.1 Dynamic Model of the CLMR 42 3.3.2 Design of Sliding-Mode Dynamic Controller 45 3.3.3 Design of Adaptive Sliding-Mode Dynamic Controller 48 3.3.4 Design of Adaptive Fuzzy Sliding-Mode Dynamic Controller 50 3.4 Summary 53 Chapter 4 Simulation results of Car-Like Mobile Robot for Trajectory Tracking 54 4.1 Introduction 54 4.2 The Straight Line Trajectory 55 4.3 The Curvilinear Trajectory 60 4.4 Summary 69 Chapter 5 Conclusions 71 5.1 Conclusions 71 5.2 Recommendations for Further Work 72 Bibliography 74

    [1] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Autom. Control, vol. 38, no. 5, pp. 700-716, May 1993.
    [2] J. P. Laumond, Robot Motion Planning and Control, Springer-Verlag, May 1998.
    [3] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile platforms using a virtual vehicle approach,” IEEE Trans. Autom. Control, vol. 46, no. 11, pp. 1777-1782, Nov. 2001.
    [4] F. Lamiraux and J. P. Laumond, “Smooth motion planning for car-like vehicles,” IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 498-502, Aug. 2001.
    [5] T. H. S. Li, S. J. Chang, and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp.491-501, Aug. 2004.
    [6] Y. Guo, Z. Qu, and J. Wang, “A new performance-based motion planner for nonholonomic mobile robot,” in Proc. the 3rd Performance Metrics for Intelligent Systems Workshop, Gaithersburg MD, Sep. 2003.
    [7] Z. Qu, J. Wang, C. E. Plaisted, and R. A. Hull, “Global-stabilizing near-optimal control design for nonholonomic chained systems,” IEEE Trans. Autom. Control, vol. 51, no. 9, pp. 1440-1456, Sep. 2006.
    [8] U. Kumar and N. Sukavanam, “Backstepping based trajectory tracking control of a four wheeled mobile robot,” Int. J. Adv. Robotic Syst., vol. 5, no. 4, pp. 403-410, 2008.
    [9] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Neural network architecture for trajectory generation and control of automated car parking,” IEEE Trans. Control Syst. Technol., vol. 4, pp. 50-56, Jan. 1996.
    [10] S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” Proc. IEEE Int. Conf. Robot. Autom., pp. 1-6, 1999.
    [11] T. H. S. Li and S. J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Syst., Man, Cybern. Part A - Syst. Hum., vol. 33, pp. 451-465, Jul. 2003.
    [12] T. H. S. Li, S. J. Chang, and Y.X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 867-880, Oct. 2003.
    [13] K. Z. Liu, M. Q. Dao, and T. Inoue, “An exponentially -convergent control algorithm for chained systems and its application to automatic parking systems,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, Nov. 2006
    [14] T. Hiroshi, U. Daisuke, K. Kazuhiko, and H. Kaoru, “A study on predicting hazard factors for safe driving,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 781-789, Apr. 2007.
    [15] C. L. Hwang, L. J. Chang and Y. S. Yu, “Network-based fuzzy decentralized sliding-mode control for car-like mobile robots,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 574-585, Feb. 2007.
    [16] B. Müller, J. Deutscher, and S. Grodde, “Continuous curvature trajectory design and feedforward control for parking a car,” IEEE Trans. Control Syst. Technol, vol. 15, no. 3, May 2007.
    [17] H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE International Conference on Intelligent Robotic System, pp. 1693-1698, 1999.
    [18] T.C. Lee, C.Y. Tsai, and K.T. Song, “Fast parking control of mobile robots: a motion planning approach with experimental validation,” IEEE Trans. Control Syst. Technol., vol. 12, pp. 661-676, Sep. 2004.
    [19] S. S. Ge and Y. J. Cui, “New potential function for mobile robot path planning,” IEEE Trans. Robot. Autom., vol. 16, no 5, pp. 615-620, Oct. 2000.
    [20] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Autom., vol. 10, pp. 577-593, Oct. 1994.
    [21] D. Leitch and P. J. Probert, “New techniques for genetic development of a class of fuzzy controllers,” IEEE Trans. Syst., Man, Cybern. Part C - Appl. Rev., vol. 28, pp. 112-123, Feb. 1998.
    [22] L. Dorst, “Analyzing the behaviors of a car: a study in abstraction of goal-directed motions,” IEEE Trans. Syst., Man, Cybern. Part A - Syst. Hum., vol. 28, pp. 811-822, Nov. 1998.
    [23] A. R. Willms and S. X. Yang, “An efficient dynamic system for real-time robot path-planning,” IEEE Trans. Syst., Man, Cybern. Part B - Cybern., vol. 36, no. 4, Aug. 2006.
    [24] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant multirobot formations,” IEEE Trans. Robot., vol. 22, no. 4, pp. 650-665, Aug. 2006.
    [25] A. Piazzi, C. G. Lo Bianco, and M. Romano, “ -splines for the smooth path generation of wheeled mobile robots,” IEEE Trans. Robot., vol. 23, no. 5, pp. 1089-1095, Oct. 2007.
    [26] K.Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE International Conference on Control Application, vol. 2, pp. 1686-1691, 1999.
    [27] K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE International Conference on Robotics and Automation, vol. 1, pp. 311-316, 1999.
    [28] K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” Proc. IEEE Conf. Intell. Transp. Syst., pp. 270-275, Oct. 2000.
    [29] P. Krammer, and H. Schweinzer, “Localization of object edges in arbitrary spatial positions based on ultrasonic data,” IEEE Sens. J., vol. 6, no. 1, pp. 203-210, Feb. 2006.
    [30] E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with extended range detectors,” IEEE Trans. Robot., vol. 22, no. 1, pp. 189-198, Feb. 2006.
    [31] N. Petrellis, N. Konofaos, and G. P. Alexiou, “Target localization utilizing the success rate in infrared pattern recognition,” IEEE Sens. J., vol. 6, no. 5, pp. 203-210, Oct. 2006.
    [32] J. Reijniers and H. Peremans, “Biomimetic sonar system performing spectrum-based localization,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1151-1159, Dec. 2007.
    [33] D. Bank and T. Kämpke, “High-resolution ultrasonic environment imaging,” IEEE Trans. Robot., vol. 23, no. 2, pp. 370-381, Apr. 2007.
    [34] L. Vachhani and K. Sridharan, “Hardware efficient prediction correction based generalized voronoi diagram construction and FPGA implementation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1558-1569, Apr. 2008.
    [35] W. L. Xu and S. K. Tso, “Sensor-based fuzzy reactive navigation of a mobile robot through local target switching,” IEEE Trans. Syst., Man, Cybern. Part C – Appl. Rev., vol.29, pp. 451-459, Aug. 1999.
    [36] D. Bank, “A novel ultrasonic sensing system for autonomous mobile system,” IEEE Sens. J., vol. 2, pp. 597-605, Dec. 2002.
    [37] R. Kazys and L. Mazeika, “Determination of spatial position of multiple targets by ultrasonic binaural method,” Ultrasonics, vol. 40, pp. 397-402, May 2002.
    [38] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and stabilization of nonholonomic dynamic systems,” IEEE Trans. Autom. Control, vol. 37, no. 11, pp. 1746-1757, Nov. 1992.
    [39] G. Campion, G. Bastin, and B. Dandrea-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Trans. Robot. Autom., vol. 12, no. 1, pp. 47-62, Feb. 1996.
    [40] E. Yang, D. Gu, T. Mita, and H. Hu, “Nonlinear tracking control of a car-like mobile robot via dynamic feedback linearization,” in Proc. Control 2004, University of Bath, UK, ID-218, Sep. 2004.
    [41] F. Mnif, “Recursive backstepping stabilization of a wheeled mobile robot,” in Proc. First International Symposium on Control, Communications and Signal, pp. 135-139, 2004.
    [42] P. S. Tsai, Modeling and Control for Wheeled Mobile Robots with Nonholonomic Constraints, Ph. D. Dissertation, National Taiwan University, 2006.
    [43] A. M. B. Loach and S. Drakunov, “Stabilization and tracking in the nonholonomic integrator via sliding modes,” Syst. Control Lett., vol.29, no.2, pp. 91-99, 1996.
    [44] J. M. Yang and J. H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Trans. Robot. Autom., vol.15, no.3, pp. 578-587, 1999.
    [45] M. L. Corradini and G. Orlando “Control of mobile robots with uncertainties in the dynamic model: A discrete time sliding mode approach with experimental results,” Control Eng. Practice, vol.10, pp. 23-34, 2002.
    [46] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Trans. Control Syst. Technol., vol. 12, pp. 637-644, 2004.
    [47] J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [48] Y. S. Kung, R. F. Fung, and T.-Y. Tai, “Realization of a motion control IC for x-y table based on novel FPGA technology,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 43-53, Jan. 2009.
    [49] I. Baturone, F.J. Moreno-Velo, S. Sanchez-Solano, and A. Ollero, “Automatic design of fuzzy controllers for car-like autonomous robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 447-465, Aug. 2004.
    [50] K. Tanaka, K. Yamauchi, H. Ohtake, and H. O. Wang, “Sensor reduction for backing-up control of a vehicle with triple trailers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 497-509, Feb. 2009.
    [51] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211-221, Apr. 2007.
    [52] S. Sánchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, and M. Brox, “FPGA implementation of embedded fuzzy controllers for robotic applications,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1937-1945, Aug. 2007.
    [53] I. Baturone, F.J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of embedded DSP-based fuzzy controllers for autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 928-936, Feb. 2008.
    [54] C. F. Juang, C. M. Lu, C. Lo, and C.-Y. Wang, “Ant colony optimization algorithm for fuzzy controller design and its FPGA implementation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1453-1462, Mar. 2008.
    [55] W. Tsui, M. S. Masmoudi, F. Karray, I. Song, and M. Masmoudi, “Soft-computing-based embedded design of an intelligent wall/lane-following vehicle,” IEEE-ASME Trans. Mechatron., vol. 13, no. 1, pp. 125-135, Feb. 2008.
    [56] C. Ario and A. Sala, “Stability analysis of fuzzy control systems subject to uncertain grades of membership,” IEEE Trans. Syst., Man, Cybern. Part B - Cybern., vol. 38, no. 2, pp. 558-563, 2008.
    [57] R. K. Barai and K. Nonami, “Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot,” Inf. Sci., vol. 177, pp. 1892-1915, 2007.
    [58] J. Dong and G. H. Yang, “State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers,” Inf. Sci., vol. 178, pp. 1680-1695, 2008.
    [59] R. E. Precup and S. Preitl, “PI-Fuzzy controllers for integral plants to ensure robust stability,” Inf. Sci., vol. 177, pp. 4410-4429, 2007.
    [60] E. N. Sanchez, H. M. Becerra, and C. M. Velez, “Combining fuzzy, PID and regulation control for an autonomous mini-helicopter,” Inf. Sci., vol. 177, pp. 1999-2022, 2007.
    [61] R. Sepúlveda, O. Castillo, P. Melin, A. Rodríguez-Díaz, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Inf. Sci., vol. 177, pp. 2023-2048, 2007.
    [62] H. N. Wu and H. X. Li, “Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems,” IEEE Trans. Syst., Man, Cybern. Part B - Cybern., vol. 37, no. 5, pp. 1422-1430, Oct. 2007.
    [63] C. S. Chiu, Robust Nonlinear Control Methods of Constraint Systems and Their Applications on Robots, Ph. D. Dissertation, Chung-Yuan Christian University, 2001.
    [64] C. S. Chiu and K. Y. Lian, “Hybrid fuzzy model-based control of nonholonomic systems: a unified viewpoint,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 85-96 Feb. 2008.
    [65] R. J. Wai, C. M. Lin and C. F. Hsu “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets Syst., vol. 143, no. 2, pp. 295-310, 2004.
    [66] M. Y. Hsiao, T. H. S. Li, J. Z. Lee, C. H. Chao and S. H. Tsai, “Design of interval type-2 fuzzy sliding-mode controller,” Inf. Sci., vol. 178, pp. 1696-1716, 2008.
    [67] M. Y. Hsiao, C. Y. Chen and T. H. S. Li, “Interval type-2 adaptive fuzzy sliding-mode dynamic control design for wheeled mobile robots,” Int. J. Fuzzy Syst., vol. 10, no. 4, pp. 268-275, Dec. 2008.
    [68] T. H. S. Li, M. Y. Hsiao, J. Z. Lee, and S. H. Tsai, “Controlling a time-varying unified chaotic system via interval type 2 fuzzy sliding-mode technique,” Int. J. Nonlinear Sci. Numer. Simul., vol. 10, no. 2, pp. 171-180, Feb. 2009.
    [69] Y. C. Hsueh and S. F. Su, “Fuzzy sliding controller design with adaptive approximate error feedback,” Int. J. Fuzzy Syst., vol. 11, no. 1, pp.36-43, Mar. 2009.
    [70] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Trans. Control Syst. Technol., vol. 14, pp. 501-510, 2006.
    [71] C. K. Lin, “Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: an LMI approach,” Inf. Sci., vol. 177, pp. 4934-4946, 2007.
    [72] Y. J. Liu and W. Wang, “Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems,” Inf. Sci., vol. 177, pp. 3901-3917, 2007.
    [73] R. J. Wai, M. A. Kuo, and J. D. Lee, “Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism,” IEEE Trans. Syst., Man, Cybern. Part B - Cybern., vol. 38, no. 2, pp. 439-454, Apr. 2008.
    [74] R. J. Wai, Z. W. Yang, “Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics,” IEEE Trans. Syst., Man, Cybern. Part B - Cybern., vol. 38, no. 5, pp. 1326-1346, Oct. 2008.
    [75] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding-mode control: part I: fuzzy switching,” Fuzzy Sets Syst., vol. 122, pp. 21-30, 2001.
    [76] R. F. Fung, K. W. Chen, and J. Y. Yen, “Fuzzy sliding mode controlled slide-crank mechanism using a PM synchronous servo motor drive,” Int. J. Mech. Sci., vol. 41, pp. 337-355, 1999.
    [77] Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 38-46, Feb. 2001.
    [78] T. Dierks and S. Jagannathan, “Control of nonholonomic mobile robot formations: backstepping kinematics into dynamics,” in Proc. IEEE Multi-conference on Systems and Control, pp. 94-99, Oct. 2007.
    [79] S. A. P. Ramaswamy and S. N. Balakrishnan, “Formation control of car-like mobile robots: A Lyapunov function based approach,” in Proc. American Control Conference, pp. 657-662, Jun. 2008.
    [80] R. Kuc, “Biomimetic sonar recognizes objects using binaural information,” J. Acoust. Soc. Am., vol. 102, Issue 2, pp. 689-696, Feb. 1997.
    [81] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proc. IEEE International Conference on Robotics and Automation, pp. 384-389, 1990.

    下載圖示 校內:2010-10-22公開
    校外:2011-10-22公開
    QR CODE