簡易檢索 / 詳目顯示

研究生: 黃聖翔
Huang, Sheng-Hsien
論文名稱: 符合多種應用之有效率的快速/反快速 傅立葉轉換編譯器
An Efficient FFT/IFFT Compiler for Different Applications
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 98
中文關鍵詞: 無線區域網路正交分頻多工系統快速/反快速傅立葉轉換編譯器
外文關鍵詞: Compiler, OFDM, Wireless LAN, FFT/IFFT
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊應用的普及與網路時代的來臨,網路對人們來說,已經是生活的一部分。近年來,由於無線網路的發達,擺脫了以往有線網路佈線的限制,無論何時何地皆可自由地上網,進而使得人們對於無線通訊的需求日益增長。無線區域網路 ( Wireless LAN ) 發展至今,隨著不同應用的需求,不同的規範與標準也應蘊而生,對今日的電腦及通訊產業而言,無線應用儼然已成為一個重要的觀念及技術。
    在現有的數位通訊系統中,正交分頻多工系統 (OFDM)是常被使用之調變技術。正交分頻多工系統與傳統單載波調變系統最大的差異之處,乃是它採用了多載波調變的技術,此方法目前已規範於802.11x、DAB、DVB等應用標準中,從硬體實現的觀點而言,可透過快速傅立葉及反傅立葉轉換 (FFT/IFFT) 的運算來達到調變與反調變之目的。但是不同應用標準意謂著有不同之FFT/IFFT規格需求,同時,在同一數位通訊系統亦可能包含不同的操作模式,因此,如何設計一個能夠滿足不同的通訊系統標準及操作模式所需的調變解調電路的系統,將是一項挑戰;而本論文便是針對此一課題,提出如何製作一有效率之 FFT/IFFT 編譯器來符合快速電路設計之目的,進而作為後續更深入研究之基礎。

    With the emergence of internet services and pervasion of communication applications, internet and wireless communication have become a part of our life. Wireless network can reach where the traditional network cannot do. This makes the applications of wireless network more widespread. To date, different wireless LAN standards have emerged from different applications and each standard has its own uniqueness and application ranges.
    Of the existing digital communication systems, the Orthogonal Frequency Division Multiplexing (OFDM) technique has been widely used in performing signal modulation. Compared with the traditional single-carrier frequency modulation technique, OFDM adopts multi-carrier modulation which has been adopted in many practical wireless systems such as 802.11x, DAB and DVB, etc. Regarding the hardware implementation, the OFDM can be fulfilled by employing the (inverse) fast Fourier transform (FFT/IFFT). In fact, different standards or operation modes imply different requirements or specifications for the associated FFT/IFFT; therefore, different design methodology should be applied. It would be a challenge if a unified FFT/IFFT architecture is to be designed. In this thesis, we investigate how to develop an efficient FFT/IFFT compiler for different applications. Based on our development, not only a dedicated FFT/IFFT module can be easily prototyped for fast system verification, but also the resulting compiler can be used as a basis for more advanced research in the future.

    TABLE OF CONTENTS                    viii LIST OF TABLES                       x LIST OF FIGURES                     xii Chapter 1 Introduction                   1 1.1 FFT Overview                      1 1.2 Motivation                       3 1.3 Organization of this Thesis             5 Chapter 2 FFT Algorithm                  6 2.1 General Algorithm                   6 2.1.1 Decimation-In-Time (DIT) FFT Algorithms      7 2.1.2 Decimation-In-Frequency (DIF) FFT Algorithms    12 2.2 High-Radix Algorithm                 18 2.2.1 Radix-4 DIF FFT Algorithm             18 2.2.2 Radix-8 DIF FFT Algorithm             21 2.3 Split-Radix DIF FFT Algorithms           25 2.3.1 Raidx-2/4 DIF FFT Algorithm            26 2.3.2 Radix-2/8 DIF FFT Algorithm            28 2.4 Complexity Analysis                  32 Chapter 3 FFT/IFFT Architecture             38 3.1 Pipelined FFT Architecture              39 3.1.1 Radix-2 Single-path Delay Feedback (R2SDF)    42 3.1.2 Radix-2 Multi-path Delay Commutator (R2MDC)   47 3.2 Memory-Based FFT Architecture            53 3.2.1 Ping-Pong Mode of the Memory Management Strategy  55 3.2.2 In-Place Mode of the Memory Management Strategy  56 3.3 A Unified FFT/IFFT Architecture            58 Chapter 4 FFT/IFFT Compiler Design           60 4.1 Implementation Strategy                  61 4.1.1 Parametrizable Architecture               61 4.1.2 Parametrizable Memory Access              65 4.2 Building Block                      68 4.3 FFT/IFFT Compiler Flow                  72 4.4 Specification                       74 4.4.1 Specification of the 128-Point R23SDF        74 4.4.2 Specification of the 128-Point R23MDC        77 4.4.3 Specification of the 128-Point Memory-Based FFT Architecture 80 4.4.4 Synthesis Result                          82 4.4.5 Analysis of Suitable Applications                85 Chapter 5 Verification and Performance                 88 5.1 Cost Function and Derivation                    88 5.2 C Simulation Model                         89 5.3 Verification Plan                          90 5.4 Performance Evaluation                        91 Chapter 6 Conclusions and Future Work                 93 6.1 Conclusions                              93 6.2 Future Work                             93 References                                 96

    [1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput., vol. 5, no. 5, pp. 87–109, 1965.
    [2] S. Bouguezel, M.O. Ahmad and M.N.S. Swamy, “Improved radix-4 and radix-8 FFT algorithms,” IEEE Transactions on Digital Object Identifier vol. 3, pp. 561–564, May 2004.
    [3] A.V. Oppenheim, R.W. Schafer and John R. Buck, “Discrete-time signal processing,” Prentice-Hill, Second Edition, 1999.
    [4] Pierre Duharnel and H. Hollmann, “Split radix FFT algorithm,” Electron. Lett., vol. 20, no. 1, pp. 14–16, Jan. 5, 1984.
    [5] D. Takahashi, “An extended split-radix FFT algorithm,” IEEE Signal Processing Letters, vol. 8, no. 5, pp. 145–147, May 2001.
    [6] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and implementation,” Proc. Eleventh Annu. IEEE Int. ASIC Conf., pp. 337–341, 1998.
    [7] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “Arithmetic complexity of the split-radix FFT algorithms,” Proc. International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP '05), vol. 5, pp. V/137–V/140, March. 18-23, 2005.
    [8] L.R. Rabiner and B. Gold, “Theory and application of digital signal processing,” Prentice-Hill, Inc., 1975.
    [9] E.H. Wold and A.M. Despain, “Pipeline and parallel pipeline FFT processors for VLSI implementation,” IEEE Trans. Comput., vol. C-33, pp. 414–426, May 1984.
    [10] A.M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE Trans. Comput., vol. C-23, pp. 993–1001, Oct. 1974.
    [11] G. Bi and E.V. Jones, “A pipelined FFT processor for word-sequential data,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1982–1985, Dec. 1989.
    [12] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” Proc. The 10th International Parallel Processing Symposium. pp. 766–770, April 1996.
    [13] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de) modulation,” 1998 URSI International Symposium on Signals, Systems, and Electronics, 1998 (ISSSE 98), pp. 257–262, 1998.
    [14] W.-C. Yeh and C.-W. Jen, “High-speed and low-power split-radix FFT,” IEEE Transactions on Signal Processing, vol. 51, no. 3, pp. 864–874, March 2003.
    [15] J. García, J. A. Michell, and A. M. Burón, “VLSI configurable delay commutator for a pipeline split radix FFT architecture,” IEEE Trans. Signal Processing, vol. 47, pp. 3098–3107, Nov. 1999.
    [16] E.E. Swartzlander, W.K.W. Young, and S.J. Joseph, “A radix-4 delay commutator for fast Fourier transform processor implementation,”          IEEE Journal of Solid-State Circuits, vol. 19, Issue 5, pp. 702–709, Oct 1984.
    [17] C.C.W. Hui, T.J. Ding, and J.V. McCanny, “A 64-point Fourier transform chip for video motion compensation using phase correlation,” IEEE Journal of Solid-State Circuits, vol. 31, Issue 11, pp. 1751–1761, Nov. 1996.
    [18] Y.N. Chang and K.K. Parhi, “An efficient pipelined FFT architecture,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, Issue 6 pp. 322–325, June 2003.
    [19] C. Ediz, M. Richard, and C.S. Kale, “A integrated 256-point complex FFT processor for real-time spectrum analysis and measurement,” Proc. IEEE Instrumentation and Measurement Technology Conference, pp. 96–101, 1997
    [20] J.A. Hidalgo, J. Lopez, F. Arguello, and E.L. Zapata, “Area-efficient architecture for fast Fourier transform,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, Issue 2, pp. 187–193, Feb. 1999
    [21] L.G. Johnson, “Conflict free memory addressing for dedicated FFT hardware,” IEEE Trans. Circuits and Systems – II: Analog and Digital Signal Processing, vol. 39, no. 5, pp. 312–316, May 1992.
    [22] H.F. Lo, M.D. Shieh, C.M. Wu, “In-place memory addressing of FFT hardware implementation for DAB system,” Proc. 11th VLSI Design/CAD Symposium, Taiwan, pp. 315–318, August 2000.
    [23] M.M. Jamali, S.C. Kwatra and D.H. Shetty, “Module generation based VLSI implementation of a demultiplexer for satellite communications,” Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 364–367, 1996.
    [24] A. Delaruelle, J. Huisken, J.V. Loo and F. Welten, “A channel demodulator IC for digital audio broadcasting,” Proc. IEEE Custom Integrated Circuits Conference, pp. 47–50, 1994.
    [25] Z. Guoping and F. Chen, “Parallel FFT with CORDIC for ultra wide band,” Proc. 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004), vol. 2, 5-8 pp. 1173–1177, Sept. 2004.
    [26] C. Shuni and C. Burrus, “A prime factor FTT algorithm using distributed arithmetic,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 2, pp. 217–227, Apr 1982.

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE