簡易檢索 / 詳目顯示

研究生: 林士嘉
Lin, Shih-Chia
論文名稱: 採用電動車負載整合再生能源發電系統之直流微電網連接至多機系統之穩定度分析研究
Stability Analysis of a DC Microgrid with Electric Vehicle Loads and Renewable Energy Generation Systems Connected with a Multi-machine Power Grid
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 風力發電系統太陽能發電系統電動車負載超級電容儲能系統多機電力系統電力系統穩定度輸出功率平滑化
外文關鍵詞: wind power-generation system, photovoltaic power-generation system, electric vehicle loads, supercapacitor energy-storage system, multi-machine power system, power system stability control, output power smoothing
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探討當電動車負載連接至電網端充電時所造成之衝擊和影響,本論文提出了一個含有風場、太陽能場、超級電容儲能系統以及電動車負載充電站之直流微電網,該直流微電網係透過一套直流轉交流之換流器併入台電簡化系統。本論文之每個所使用到之系統子模塊皆有詳細之數學推導模型,連同內部之轉換器或換流器皆有詳細描述其工作原理和建模方法。在本論文中除了對整體系統之穩態、動態和暫態進行穩定度之評估外,同時利用經濟分析之軟體對本論文所研究之系統架構進行可行性之評估,最終從模擬結果可以驗證加入了實時之電動車功率分配方法和超級電容儲能系統後,能有效地平滑化輸出至交流電網側之實功,降低直流微電網端對同步發電機組之影響。

    To investigate the impacts and effects of connecting electric vehicle (EV) loads to the grid for charging, this thesis proposes a DC microgrid system that includes a wind farm, a solar energy power plant, a supercapacitor-based energy storage system, and an EV load charging station. The DC microgrid is integrated into the simplified Taiwan Power System through a bidirectional DC/AC converter. Each subsystem utilized in this study is accompanied by detailed mathematical derivation models, along with comprehensive descriptions of the operational principles and modeling methods of the internal converters or inverters. In addition to assessing the stability of the overall system in terms of steady-state, dynamic, and transient behaviors, economic analysis software is employed to evaluate the feasibility of the proposed system architecture. The simulation results demonstrate that the incorporation of real-time EV power allocation methods and the supercapacitor-based energy storage system can effectively smooth out the active power output to the AC grid side.

    摘要 I ABSTRACT II 目錄 IX 表目錄 XIII 圖目錄 XV 符號說明 XIX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本文之貢獻 10 1-4 研究內容概述 11 第二章 研究系統架構與數學模型 13 2-1 前言 13 2-2 太陽能光伏發電系統之數學模型 16 2-2-1 太陽能光伏電池模型 16 2-2-2 太陽能陣列之數學模型 18 2-2-3 直流對直流升壓轉換器數學模型 19 2-3 風力渦輪機之數學模型 23 2-3-1 旋角控制器之數學模型 25 2-3-2 風力渦輪機與發電機間轉矩之數學模型 26 2-3-3 風力永磁式同步發電機之數學模型 28 2-3-4 電壓源轉換器之數學模型 31 2-4 超級電容器儲能系統之數學模型 32 2-4-1 超級電容器之數學模型 33 2-4-2 雙向直流對直流轉換器之數學模型 34 2-5 電動車負載之數學模型 36 2-5-1 電動車電池之數學模型 37 2-5-2 雙向直流對直流轉換器之數學模型 38 2-6 直流對交流電壓源換流器之數學模型 40 2-7 多機系統模型 43 2-7-1 同步發電機之數學模型 43 2-7-2 激磁系統之數學模型 45 2-7-3 蒸氣渦輪機轉矩之數學模型 47 2-7-4 調速機之數學模型 48 2-7-5 負載與傳輸線網路之數學模型 49 第三章 經濟分析 52 3-1 前言 52 3-2 經濟分析的各項指標 53 3-2-1 能量成本(cost of energy, COE) 53 3-2-2 簡易回收年限(simple payback period, SPP) 54 3-2-3 現金折流法(discounted cash flow, DCF) 54 3-2-4 經濟益本比(benefit-cost ratio, B/C ratio) 55 3-2-5 淨現值(net present value, NPV) 55 3-3 RETSCREEN軟體介紹 56 3-4 經濟分析結果 67 第四章 電動車負載獨立運轉測試 71 4-1 前言 71 4-2 電動車規格的選定 71 4-3 電動車充電的功率分配方法 77 第五章 系統之穩態分析 83 5-1 前言 83 5-2 特徵值求得方法 84 5-3 穩態案例一之特徵值根軌跡分析 86 5-4 穩態案例二之特徵值根軌跡分析 92 5-5 穩態案例三之特徵值根軌跡分析 97 第六章 系統之動態與暫態分析 102 6-1 前言 102 6-2 動態響應分析 103 6-2-1 動態案例一之輸入風速變動分析 103 6-2-2 動態案例二之太陽光照度變動分析 108 6-3 暫態響應分析 112 6-3-1 暫態案例一之風場跳脫分析 112 6-3-2 暫態案例二之太陽能場跳脫分析 116 第七章 結論與未來研究方向 120 7-1 結論 120 7-2 未來研究方向 122 參考文獻 124 附錄:本論文研究系統架構所使用之參數 132

    [1] S. Aatif, H. Hu, X. Yang, Y. Ge, Z. He, and S. Gao, “Adaptive droop control for better current-sharing in VSC-based MVDC railway electrification system,” in Journal of Modern Power Systems and Clean Energy, vol. 7, no. 4, pp. 962-974, Jul. 2019.
    [2] F. Zhu, Z. Yang, H. Xia, and F. Lin, “Hierarchical control and full-range dynamic performance optimization of the supercapacitor energy storage system in urban railway,” IEEE Trans. Industrial Electronics, vol. 65, no. 8, pp. 6646-6656, Aug. 2018.
    [3] S. Khayyam, N. Berr, L. Razik, M. Fleck, F. Ponci, and A. Monti, “Railway system energy management optimization demonstrated at offline and online case studies,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 11, pp. 3570-3583, Nov. 2018.
    [4] S. Boudoudouh and M. Maaroufi, “Renewable energy sources integration and control in railway microgrid,” IEEE Trans. Industry Applications, vol. 55, no. 2, pp. 2045-2052, Mar.-Apr. 2019.
    [5] G. Cui et al., “Supercapacitor integrated railway static power conditioner for regenerative braking energy recycling and power quality improvement of high-speed railway system,” IEEE Trans. Transportation Electrification, vol. 5, no. 3, pp. 702-714, Sep. 2019.
    [6] P. Diaz-Cachinero, J. I. Muñoz-Hernandez, and J. Contreras, “A microgrid model with EV demand uncertainty and detailed operation of storage systems,” IEEE Trans. Industry Applications, vol. 58, no. 2, pp. 2497-2511, Mar.-Apr. 2022.
    [7] F. Jiao, Y. Zou, X. Zhang, and B. Zhang, “A three-stage multi-timescale framework for online dispatch in a microgrid with EVs and renewable energy,” IEEE Trans. Transportation Electrification, vol. 8, no. 1, pp. 442-454, Mar. 2022.
    [8] M. S. Rahman, M. J. Hossain, J. Lu, F. H. M. Rafi, and S. Mishra, “A vehicle-to-microgrid framework with optimization-incorporated distributed EV coordination for a commercial neighborhood,” IEEE Trans. Industrial Informatics, vol. 16, no. 3, pp. 1788-1798, Mar. 2020.
    [9] Z. Shen, C. Wu, L. Wang, and G. Zhang, “Real-time energy management for microgrid with EV station and CHP Generation,” IEEE Trans. Network Science and Engineering, vol. 8, no. 2, pp. 1492-1501, Apr.-Jun. 2021.
    [10] M. Vosoogh, M. Rashidinejad, A. Abdollahi, and M. Ghaseminezhad, “An intelligent day ahead energy management framework for networked microgrids considering high penetration of electric vehicles,” IEEE Trans. Industrial Informatics, vol. 17, no. 1, pp. 667-677, Jan. 2021.
    [11] R. Evode, “Modeling of electric grid behaviors having electric vehicle charging stations with G2V and V2G possibilities,” in Proc. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, Oct. 2021, pp. 1-5.
    [12] T. F. Megahed, S. M. Abdelkader, and A. Zakaria, “Energy management in zero-energy building using neural network predictive control,” in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5336-5344, Jun. 2019.
    [13] Y. Xu, W. Wu, and J. Zhou, “A distributed task allocation based on a winner-take-all approach for multiple energy storage systems coordination in a microgrid,” IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 686-695, Jan. 2020.
    [14] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “Effective utilization of available PEV battery capacity for mitigation of solar PV impact and grid support with integrated V2G functionality,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1562-1571, May 2016.
    [15] M. O. Badawy and Y. Sozer, “Power flow management of a grid tied PV-battery system for electric vehicles charging,” IEEE Trans. Industry Applications, vol. 53, no. 2, pp. 1347-1357, Mar.-Apr. 2017.
    [16] S. M. Shariff, D. Iqbal, M. S. Alam, and F. Ahmad, “A state of the art review of electric vehicle to grid (V2G) technology,” in Proc. 2019 First International Conference on Materials Science and Manufacturing Technology (ICMSMT 2019), Coimbatore, Tamil Nadu, India, Nov. 2019, pp. 1-11.
    [17] A. M. A. Haidar and K. M. Muttaqi, “Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers,” IEEE Trans. Industry Applications, vol. 52, no. 1, pp. 483-492, Jan.-Feb. 2016.
    [18] M. Restrepo, J. Morris, M. Kazerani, and C. A. Cañizares, “Modeling and testing of a bidirectional smart charger for distribution system EV integration,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 152-162, Jan. 2018.
    [19] K. Huang, Y. Wang, and J. Feng, “Research on equivalent circuit model of lithium-ion battery for electric vehicles,” in Proc. 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, 2020, pp. 492-496.
    [20] A. Zahedmanesh, K. M. Muttaqi, and D. Sutanto, “Active and reactive power control of PEV fast charging stations using a consecutive horizon-based energy management process,” IEEE. Trans. Industrial Informatics, vol. 17, no. 10, pp. 6742-6753, Oct. 2021.
    [21] V. T. Tran, M. R. Islam, K. M. Muttaqi, and D. Sutanto, “An efficient energy management approach for a solar-powered EV battery charging facility to support distribution grids,” IEEE Trans. Industry Applications, vol. 55, no. 6, pp. 6517-6526, Nov.-Dec. 2019.
    [22] M. Guizani and O. Wasynczuk, “Hybrid electric vehicle analysis and wireless battery charging,” in Proc. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, Sep. 2016, pp. 275-280.
    [23] Y. Zhang, J. He, and D. M. Ionel, “Modeling and control of a multiport converter-based EV charging station with PV and battery,” in Proc. 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2019, pp. 1-5.
    [24] A. Verma and B. Singh, “Multimode Operation of solar PV array, grid, battery and diesel generator set based EV charging station,” IEEE Trans. Industry Applications, vol. 56, no. 5, pp. 5330-5339, Sep.-Oct. 2020.
    [25] Q. Sun, H. Lv, S. Gao, K. Wei, and M. Mauersberger, “Optimized control of reversible VSC with stability mechanism study in SMES based V2G system,” IEEE Trans. Applied Superconductivity, vol. 29, no. 2, pp. 1-6, Mar. 2019.
    [26] M. Singh, K. Thirugnanam, P. Kumar, and Indrani Kar, “Real-time coordination of electric vehicles to support the grid at the distribution substation level,” IEEE System Journal, vol. 9, no. 3, pp. 1000-1010, Sep. 2015.
    [27] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [28] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [29] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [30] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I: Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [31] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [32] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [33] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” in Proceeding of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [34] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission & Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [35] F. Mei, “Small-signal modelling and analysis of doubly-fed induction generators in wind power applications,” Ph.D dissertation, Imperial College London, University of London, London, UK, 2008.
    [36] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [37] L. Shi and M. L. Crow, “Comparison of ultracapacitor electric circuit models,” in Proc. 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008, pp. 1-6.
    [38] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010.
    [39] M. A. Abdullah, A. H. M. Yatim, and Chee Wei Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Jun. 2011, pp. 321-326.
    [40] S. Chiniforoosh et al., “Dynamic average modeling of front-end diode rectifier loads considering discontinuous conduction mode and unbalanced operation,” in Proc. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, Jul. 2012, pp. 1-1.
    [41] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [42] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [43] X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers, and P. Kundur, “Modeling of generators and their controls in power system simulations using singular perturbations,” IEEE Trans. Power Systems, vol. 13, no. 1, pp. 109-114, Feb. 1998.
    [44] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合式可再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
    [45] 彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    [46] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    [47] 高浩瑜,使用自適應類神經網路控制器於混合交流/直流微電網系統之性能改善,國立成功大學電機工程學系碩士論文,2021年6月。
    [48] 黃弘昇,整合風能、燃料電池、微渦輪發電系統之直流微電網饋入多機系統的穩定度分析,2021年6月。
    [49] 李旻舫,雙向互連轉換器於孤島混合交流/直流微電網之頻率控制策略,國立成功大學電機工程學系碩士論文,2022年7月。
    [50] 黃志宏,設計混合式儲能系統之自適應模糊邏輯控制器以達成混合太陽/風能微電網系統的功率平滑,2022年7月。
    [51] 從1867年兩輪電動車到2008年的特斯拉!百年來的電動車歷史。[Online]. Available: https://www.techbang.com/posts/87134-history-electric-vehicles, retrieved date: Apr. 26, 2023.
    [52] 維基百科,自由的百科全書。[Online]. Available: https://www.wikipedia.org, retrieved date: Apr. 26, 2023.
    [53] 台灣電力公司。[Online]. Available: https://www.taipower.com.tw/tc/index.aspx, retrieved date: Apr. 26, 2023.
    [54] 國際能源總署(The International Energy Agency, IEA)。[Online]. Available: https://www.iea.org/index.asp, retrieved date: Apr. 26, 2023.
    [55] J. Zhao, S. Zhang, Y. Zhang, and Z. Zhang, “Optimal capacity configuration of hybrid energy storage system for photovoltaic plant,” in Proc. 2021 IEEE Sustainable Power and Energy Conference (ISPEC), Nanjing, China, Dec. 2021, pp. 1183-1188.
    [56] C. Lu, J. Wu, J. Cui, Y. Xu, C. Wu, and M. C. Gonzalez, “Deadline differentiated dynamic EV charging price menu design” IEEE. Trans. Smart Grid, vol. 14, no. 1, pp. 502-516, Jan. 2023.
    [57] 2018 Nissan Leaf battery real specs. [Online]. Available: https://pushevs.com/2018/01/29/2018-nissan-leaf-battery-real-specs, retrieved date: May 4, 2023.

    無法下載圖示 校內:2028-07-18公開
    校外:2028-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE