簡易檢索 / 詳目顯示

研究生: 紀博凱
Ji, Bo-Kai
論文名稱: 介電陶瓷材料(1-x) Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之微波特性分析與共振溫度飄移係數對帶通濾波器特性關係與影響之探討
Analysis of Microwave Dielectric Ceramic Material (1-x) Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3 and Study of the Effect of Temperature Coefficient of Resonant Frequency on the Characteristics of Band-pass Filters
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 微波介電陶瓷材料溫度飄移係數(1-x) Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3τ_f
外文關鍵詞: Microwave Dielectric Ceramic Material, (1-x) Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3, Temperature Coefficient, τ_f
相關次數: 點閱:116下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般高Q值微波介電材料通常具有負值的共振頻率溫度飄移係數(τ_f),過去的研究者都會添加低Q值的正τ_f的介電材料,使其最終的τ_f值落在±5ppm/℃之間,但不同τ_f對實際陶瓷濾波器的影響到目前為止並沒有人做相關的探討。本研究先用固態燒結法製作Mg(Ti0.95Sn0.05)O3與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3二種塊體,經微波特性量測,可以在燒結溫度1375℃持溫4小時條件下得到最佳的品質,其介電常數分別為17.81與18.2,Q×f值分別為225,700GHz(at 9.75GHz)與194,740GHz (at 9.72GHz),與過去文獻比較本研究的Q×f值略低,由XRD分析得知因為具有較多MgTi2O5二次相所造成;此外本研究顯示摻雜微量的Zn2+取代Mg2+會造成Q×f值降低與過去文獻相反。以Mg(Ti0.95Sn0.05)O3添加不同莫耳比例的(Ca0.8Sr0.2)TiO3,以燒結溫度1375℃持溫4小時獲得三種不同τ_f之基板(τ_f=-52.32、-20.25、0.01 ppm/℃) ,在其上網印製作中心頻率為2.45GHz的帶通濾波器,在30℃~90℃間進行S參數量測,結果顯示三種不同τ_f之基板濾波器特性並不會隨著溫度變化而改變,因此摻雜正τ_f之補償材料使溫度飄移係數在±5 ppm/℃的限制並非絕對必要,而且會增加濾波器的插入損失。

    High-Q microwave dielectric materials usually have a negative temperature coefficient of resonant frequency (τ_f). In the past, researchers added a low-Q positive τ_f dielectric material to make the final τ_f value fall within ±5 ppm/°C at the cost of reduction of Q factor. Previous to this study, the effect of different τ_f on microstrip components, such microwave filters, had not be fully discussed yet. In this study, Mg(Ti0.95Sn0.05)O3 and (Mg0.95Zn0.05)(Ti0.95Sn0.05)O3 were first prepared by using solid- state sintering method. The most densified bulk for both materials were found under the condition of sintering temperature of 1375 ℃ for 4 hours and the measurements showed that the dielectric constants were 17.81 and 18.2, respectively, and the Q×f values were 225,700 GHz (at 9.75 GHz) and 194,740 GHz (at 9.72 GHz), respectively. XRD analysis showed the existence of MgTi2O5 secondary phase, which accounts for the lower Q×f value of this study, compared with that in past-published reference. In addition, this study also showed that small addition of Zn2+ would decrease Q×f value, contrary to the finding in previous reference. Mg(Ti0.95Sn0.05)O3 was mixed with different molar ratios of (Ca0.8Sr0.2)TiO3, and three different τ_f substrates were obtained at a sintering temperature of 1375 °C for 4 hours (τ_f=-50.32、-20.25、0.01ppm /°C ). Then, band-pass filters were printed on these substrates. The center frequency was 2.45 GHz. S-parameter measurements for temperatures among 30℃ ~90℃were conducted. Contrary to common sense, the results showed that the measured filter characteristics did not varied from 30℃ ~90℃ even for τ_f up to -50.32 ppm /°C. Therefore, the past restriction for τ_f within ±5 ppm/°C seemed unnecessary. In addition, the technique of compensating τ_f always resulting in sacrifice of Q factor, which in term causes the increase of insertion loss of filters.

    摘要 I 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的與方法 3 第二章 相關理論與研究現況 4 2-1 陶瓷材料燒結原理 4 2-1-1 材料燒結之過程 4 2-1-2 燒結之種類(固、液相燒結) 5 2-2 微波介電材料特性 6 2-2-1 相對介電常數 6 2-2-2 品質因數(Quality factor) 10 2-2-3 共振頻率溫度飄移係數 13 2-3 介電共振器 14 2-3-1 介電共振原理 14 2-4 MgTiO3材料 15 2-5 (Ca0.8Sr0.2)TiO3材料 16 第三章 微帶線與濾波器 17 3-1 微帶線原理 17 3-1-1 微帶傳輸線簡介 17 3-1-2 微帶線之傳輸組態 17 3-1-3 微帶線之各項參數公式計算及考量 18 3-2 濾波器原理 20 3-2-1 濾波器簡介 20 3-2-2 濾波器之通帶頻段及其頻率響應 21 3-2-3 濾波器微波特性參數 23 3-3 微帶線共振器 24 3-3-1 微帶線共振器種類 24 3-3-2 共振器間的耦合形式 28 3-3-3 外部品質因素 31 3-3-4 四分之一波長的阻抗轉換器與開路殘段 31 第四章 研究方法與實驗規劃 33 4-1 實驗方法 33 4-1-1 陶瓷塊體之製作 33 4-1-2 XRD相鑑定 37 4-1-3 密度量測與計算 38 4-1-4 微波特性量測 39 4-1-5 溫度飄移係數量測 41 4-1-6 濾波器設計、分析、製作與量測 41 4-2 實驗規劃 48 4-2-1 比較Mg(Ti0.95Sn0.05)O3 與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3的燒結特性 48 4-2-2 將最佳燒結條件之鎂鈦錫氧粉體做混相,並做出一系列不同溫度飄移係數之材料 49 4-2-3 製作一系列之濾波器並量測在不同溫度下的特性變化 49 第五章 實驗結果與討論 51 5-1 Mg(Ti0.95Sn0.05)O3 與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3的燒結特性探討 51 5-1-1 Mg(Ti0.95Sn0.05)O3與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3之XRD分析 51 5-1-2 Mg(Ti0.95Sn0.05)O3與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3之密度、品質因數分析 54 5-1-3 Mg(Ti0.95Sn0.05)O3與(Mg0.95Zn0.05)(Ti0.95Sn0.05)O3介電常數分析 56 5-2 (1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3特性探討 57 5-2-1 (1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之XRD分析 57 5-2-2 (1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之密度分析 59 5-2-3 (1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之Q×f值之分析 60 5-2-4 (1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之溫度飄移係數分析 61 5-2-5 (1-x) Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之介電特性分析 62 5-3 濾波器模擬與實作 64 5-3-1 Mg(Ti0.95Sn0.05)O3基板濾波器之模擬與實作 65 5-3-2 0.96Mg(Ti0.95Sn0.05)O3-0.04(Ca0.8Sr0.2)TiO3基板濾波器之模擬與實作 66 5-3-3 0.945Mg(Ti0.95Sn0.05)O3-0.055(Ca0.8Sr0.2)TiO3基板濾波器之模擬與實作 68 5-4 不同溫度飄移係數之濾波器在不同溫度下之探討 70 第六章 結論與未來方向 73 參考文獻 75

    [1] 余洪滔, 刘韩星, 田中青, 吴朝辉, and 欧阳世翕, "滤波器用微波介质陶瓷材料," 功能材料, vol. 35, pp. 1407-1410, 2004.
    [2] C.-L. Huang, C.-L. Pan, and J.-F. Hsu, "Dielectric properties of (1− x)(Mg0. 95Co0. 05) TiO3–xCaTiO3 ceramic system at microwave frequency," Materials research bulletin, vol. 37, no. 15, pp. 2483-2490, 2002.
    [3] J. Iqbal, H. Liu, H. Hao, A. Ullah, M. Cao, and Z. Yao, "Phase, microstructure, and microwave dielectric properties of a new ceramic system: (1−x)Mg(Ti0.95Sn0.05)O3–xCaTiO3," Ceramics International, vol. 43, no. 16, pp. 14156-14160, 2017.
    [4] H. J. Jo, J. S. Kim, and E. S. Kim, "Microwave dielectric properties of MgTiO3-based ceramics," Ceramics International, vol. 41, pp. S530-S536, 2015.
    [5] 郭展綱, "燒結促進劑對 0.9CaWO4-0.1Mg2SiO4 介電陶瓷之影響與應用," 碩士 論文, 電機工程研究所, 成功大學, 2004.
    [6] 陳皇鈞, 陶瓷材料概論. 曉園出版社, 1987.
    [7] D. M. Pozar, Microwave engineering, 3rd ed. Wiley New York, 2005.
    [8] C.-L. Huang and M.-H. Weng, "Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature," Materials Research Bulletin, vol. 36, no. 15, pp. 2741-2750, 2001.
    [9] H. Shin, H.-K. Shin, H. S. Jung, S.-Y. Cho, and K. S. Hong, "Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass," Materials Research Bulletin, vol. 40, pp. 2021-2028, 2005.
    [10] P. Gogoi, L. R. Singh, and D. Pamu, "Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications," Journal of Materials Science: Materials in Electronics, vol. 28, no. 16, pp. 11712-11721, 2017.
    [11] 魏炯權, "基礎材料緒論," in 電子陶瓷材料2 ed.: 全華圖書股份有限公司, 2012, pp. 1-1~1-46.
    [12] 吳朗, 電工材料. 滄海書局, 1998.
    [13] J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0. 95Sn0. 05)O4–(Ca0. 8Sr0. 2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, no. 2, pp. 324-328, 2010.
    [14] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [15] 翁敏航, 射頻被動元件設計. 臺灣東華, 2006.
    [16] G. Kompa, "Microstrip filters for RF/microwave applications," Artech House, 2005.
    [17] 張盛富 and 戴明鳳, "無線通信之射頻被動電路設計," 全華圖書股份有限公司, 1998.
    [18] B. Hakki and P. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
    [19] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [20] P. Gogoi, L. Singh, and D. Pamu, "Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications," Journal of Materials Science: Materials in Electronics, vol. 28, no. 16, pp. 11712-11721, 2017.
    [21] P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles, and D. Cannell, "Structure–microwave property relations in (SrxCa (1−x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1723-1726, 2001.

    下載圖示 校內:2021-08-15公開
    校外:2021-08-15公開
    QR CODE