| 研究生: |
錢玥安 Cian, Yue An |
|---|---|
| 論文名稱: |
自然基礎解方觀點下建成環境空間影響熱平衡因子之空間評估
—以台南市都市計畫區為例 Spatial Assessment of Heat Balance Factors in Built Environments under Nature-Based Solutions: A Case Study of the Urban Planning Area in Tainan City |
| 指導教授: |
李俊霖
Lee, Chun-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 基於自然的解決方案 、都市熱島 、K-平均演算法 |
| 外文關鍵詞: | Nature-Based Solutions, Urban Heat Island, K-Means |
| 相關次數: | 點閱:102 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球氣溫的持續升高,東亞地區,尤其是台灣,面臨著夏季高溫現象的日益早到和頻繁。根據聯合國政府間氣候變化專門委員會(IPCC)的第六次評估報告,未來20年內全球氣溫預計將上升超過1.5°C,亞洲地區亦將面臨長期的高溫狀態。面對都市化與氣候變遷帶來的挑戰,基於自然的解決方案(NBS)被提倡為一種有效的應對策略,利用自然生態過程來解決社會挑戰,提供可持續的環境實踐。本研究建立在熱能在建成環境中的熱能轉換過程上,重新定義NBS在降溫潛力,透過適宜性分析建立一套評估架構,識別都市用地中NBS的潛在降溫因子,並探討這些因子在熱能流動上的相互作用和空間分佈狀況。其研究面相分為四個主要面向:反射太陽輻射能力、熱儲存與釋放能力、代謝熱輻射能力、以及街谷內的通熱能力,並再將主要影響將都市溫度降溫的因子進行集群分析,以分群的方式歸納出那些因子組成特性具有較高的降溫條件與NBS潛力。
初步結果顯示,在反射太陽輻射能力面上,建物因樓層不高,反射能力差異不大。然而,高反射能力集中在安南區及東區的道路和綠地,水體反射最強且主要在安平區和北區;熱儲存與釋放能力上,比熱容較高的建物集中在東北側的安南區,而樹木與綠地的熱儲存能力因其分佈廣泛,特別是在東區及中西區,提供了顯著的降溫效果;代謝熱輻射能力上,因蒸發能力最高的區域為安南區、安平區及中西區,樹木的蒸散作用和光合作用主要集中在中西區和南區,有效提升了這些區域的空氣調節能力;街谷內的通熱能力,目前該面向的分析尚在進行中,其研究結果顯示,都市降溫潛力區域位於建成開發強度較高地區,反之開發強度底但自然資源較豐富的地區反而在熱能轉換上潛力較低,因此都市建城地區是較有NBS降溫潛力的。
With the continuous rise in global temperatures, East Asia, particularly Taiwan, is experiencing increasingly early and frequent high temperatures in summer. According to the IPCC's Sixth Assessment Report, global temperatures are expected to rise by more than 1.5°C within the next 20 years, leading to prolonged high temperatures in Asia. In response to urbanization and climate change, Nature-Based Solutions (NBS) are advocated as an effective strategy that utilizes natural processes to address social challenges and provide sustainable environmental practices.This study focuses on heat transfer in built environments and redefines the cooling potential of NBS. It establishes an assessment framework to identify potential cooling factors of NBS in urban land use and explores the interaction and spatial distribution of these factors in heat flow. The study covers four main aspects: solar radiation reflection, heat storage and release, metabolic heat radiation, and heat conduction within street canyons. Key factors that contribute to urban temperature reduction are clustered to determine which combinations have higher cooling potential and NBS effectiveness.Preliminary results show that buildings have similar solar radiation reflection abilities due to their low height, but high reflection areas are concentrated in An-Nan and East Districts' roads and green spaces, with the strongest reflections from water bodies in Anping and North Districts. Heat storage and release capabilities are higher in buildings in northeastern An-Nan, while trees and green spaces, especially in East and Central-West Districts, provide significant cooling. Areas with high evaporation, mainly in An-Nan, Anping, and Central-West Districts, benefit from trees' evapotranspiration and photosynthesis, enhancing air regulation. Urban areas with high development intensity show greater NBS cooling potential than less developed, resource-rich areas.
1. Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295-310. doi:https://doi.org/10.1016/S0038-092X(00)00089-X
2. ANSI/ASHRAE Standard 55-2010. (2010). American Society of Heating, Refrigerating and Air-Conditioning Engineers.
3. Acharya, P., Gupta, A. K., Dhyani, S., & Karki, M. (2020). New pathways for NbS to realise and achieve SDGs and post 2015 targets: Transformative approaches in resilience building. In Nature-based Solutions for Resilient Ecosystems and Societies (pp. 435-455): Springer.
4. Akpoti, K., Kabo-bah, A. T., & Zwart, S. J. (2019). Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 173, 172-208. doi:10.1016/j.agsy.2019.02.013
5. Argueso, D., Evans, J. P., Fita, L., & Bormann, K. J. (2014). Temperature response to future urbanization and climate change. Climate Dynamics, 42(7-8), 2183-2199. doi:10.1007/s00382-013-1789-6
6. American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2004). ASHRAE Standard 55: Thermal environmental conditions for human occupancy.
7. Brager, G. S., & de Dear, R. J. (1998). Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27(1), 83-96. doi:https://doi.org/10.1016/S0378-7788(97)00053-4
8. Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three-dimensional numerical model. Environmental Modelling & Software, 13(3-4), 373-384.
9. Bunruamkaew, K., & Murayama, Y. (2011). Site Suitability Evaluation for Ecotourism Using GIS & AHP: A Case Study of Surat Thani Province, Thailand. Procedia - Social and Behavioral Sciences, 21, 269-278. doi:10.1016/j.sbspro.2011.07.024
10. Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., & Walters, G. (2019). Core principles for successfully implementing and upscaling nature-based solutions. Environmental Science & Policy, 98, 20-29. doi:10.1016/j.envsci.2019.04.014
11. Daneshvar, M. R. M., Bagherzadeh, A., & Tavousi, T. (2013). Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran. Central European Journal of Geosciences, 5(1), 53-60.
12. Depietri, Y., Welle, T., & Renaud, F. G. (2013). Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: links to ecosystem services. International Journal of Disaster Risk Reduction, 6, 98-117. doi:10.1016/j.ijdrr.2013.10.001
13. Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings, 35(1), 69-76. doi:https://doi.org/10.1016/S0378-7788(02)00081-6
14. Dufton, A. F. (1936). The equivalent temperature of a room and its measurement (2nd ed.).
15. Epstein, Y., & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial health, 44(3), 388-398.
16. Fanger, P. O. (1967). Calculation of thermal comfort: Introduction of a basic comfort equation. ASHRAE Transactions, 73, 1-17.
17. Fanger, P. O. (1973). Assessment of man's thermal comfort in practice. Occupational and Environmental Medicine, 30(4), 313-324.
18. Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural hazards, 65(3), 2105-2128.
19. Gagge, A. P., Fobelets, A. P., & Berglund, L. G. (1986). Standard predictive index of human response to the thermal environment. Paper presented at the ASHRAE Transactions.
20. Gagge, A. P., Nishi, Y., & Gonzalez, R. (1972). Standard effective temperature: A single temperature index of temperature sensation and thermal discomfort. In Proceedings of the CIB Commission W45 Symposium (pp. 229-250).
21. Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., & Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645-11650.
22. Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., & Worthington, T. (2020). National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794). doi:10.1098/rstb.2019.0126
23. Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E., & Ford, A. (2018). Future heat-waves, droughts and floods in 571 European cities. Environmental Research Letters, 13(3). doi:10.1088/1748-9326/aaaad3
24. Hatvani-Kovacs, G., Belusko, M., Skinner, N., Pockett, J., & Boland, J. (2016). Heat stress risk and resilience in the urban environment. Sustainable Cities and Society, 26, 278-288. doi:10.1016/j.scs.2016.06.019
25. Hiemstra, J. A., Saaroni, H., & Amorim, J. H. (2017). The Urban Heat Island: Thermal Comfort and the Role of Urban Greening. In D. Pearlmutter, C. Calfapietra, R. Samson, L. O'Brien, S. Krajter Ostoić, G. Sanesi, & R. Alonso del Amo (Eds.), The Urban Forest: Cultivating Green Infrastructure for People and the Environment (pp. 7-19). Cham: Springer International Publishing.
26. Hopkins, L. D. (1977). Methods for generating land suitability maps: A comparative evaluation. Journal of the American Institute of Planners, 43(4), 386-400.
27. Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. doi:10.1007/s004840050118
28. Jafari, S., & Zaredar, N. (2010). Land suitability analysis using multi-attribute decision making approach. International Journal of Environmental Science and Development, 1(5), 441.
29. Jendritzky, G., de Dear, R., & Havenith, G. (2012). UTCI—why another thermal index? International Journal of Biometeorology, 56(3), 421-428.
30. Jeong, D.-i., Park, K.-h., & Song, B.-g. (2016). A comparison between in-situ PET and ENVI-met PET for evaluating outdoor thermal comfort. KIEAE Journal, 16(1), 11-19.
31. Kabisch, N., Kraemer, R., Masztalerz, O., Hemmerling, J., Puffel, C., & Haase, D. (2021). Impact of summer heat on urban park visitation, perceived health and ecosystem service appreciation. Urban Forestry & Urban Greening, 60. doi:10.1016/j.ufug.2021.127058
32. Kovács, A., Égerházi, L., & Unger, J. (2013). Application of Microclimate Modelling and Onsite Survey in Planning Practice Related to an Urban Micro-Environment. Advances in Meteorology, 2013. doi:10.1155/2013/251586
33. Li, L., Cheshmehzangi, A., Chan, F. K. S., & Ives, C. D. (2021). Mapping the Research Landscape of Nature-Based Solutions in Urbanism. Sustainability, 13(7). doi:10.3390/su13073876
34. Lin, T. P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017-2026. doi:10.1016/j.buildenv.2009.02.004
35. Liu, H., & Weng, Q. (2012). Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sensing of Environment, 117, 57-71.
36. Luan, C., Liu, R., & Peng, S. (2021). Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili Valley, China. Ecological Indicators, 123, 107333. doi:https://doi.org/10.1016/j.ecolind.2020.107333
37. Manteghi, G., bin Limit, H., & Remaz, D. (2015). Water bodies and urban microclimate: A review. Modern Applied Science, 9(6), 1.
38. Marando, F., Salvatori, E., Sebastiani, A., Fusaro, L., & Manes, F. (2019). Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392, 92-102. doi:10.1016/j.ecolmodel.2018.11.011
39. Matzarakis, A., & Amelung, B. (2008). Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In M. C. Thomson, R. Garcia-Herrera, & M. Beniston (Eds.), Seasonal Forecasts, Climatic Change and Human Health: Health and Climate (pp. 161-172). Dordrecht: Springer Netherlands.
40. Matzarakis, A., Fröhlich, D., Gangwisch, M., Ketterer, C., Peer, A., Freiburg, A., & Freiburg, D. (2015). Developments and applications of thermal indices in urban structures by RayMan and SkyHelios model. Paper presented at the Proceedings of the ICUC9 9th International Conference on the Urban Climate Jointly with the 12th Symposium on the Urban Environment, Freiburg, Germany.
41. Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-2.
42. Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and applied climatology, 38(1), 43-49.
43. Morini, E., Touchaei, A. G., Rossi, F., Cotana, F., & Akbari, H. (2018). Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Climate, 24, 551-566. doi:https://doi.org/10.1016/j.uclim.2017.08.001
44. Moriyama, H. (Eds.). (Year). Adaptation measures for urban heat islands (pp. 115-159). Academic Press.
45. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. doi:https://doi.org/10.1002/qj.49710845502
46. Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1), 103-113. doi:https://doi.org/10.1016/0378-7788(88)90026-6
47. Ozkeresteci, I., Crewe, K., Brazel, A., & Bruse, M. Use and evaluation of the ENVI-met model for environmental design and planning: An experiment on linear parks.
48. Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, B. R. (Eds.). (2022). IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Retrieved from https://www.ipcc.ch/report/ar6/wg2/
49. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
50. Saaty, T. L., & Vargas, L. G. (1991). Prediction, projection and forecasting: Applications of the analytic hierarchy process in economics, finance, politics, games and sports. Springer.
51. Sakkeri, R., & Devadas, V. (2019). Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: a case of Tehri Garhwal District, Uttarakhand, India. Journal of Cleaner Production, 238.
52. Santamouris, M., & Yun, G. Y. (2020). Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renewable Energy, 161, 792-807.
53. Schmidt, S., Guerrero, P., & Albert, C. (2022). Advancing Sustainable Development Goals with localised nature-based solutions: Opportunity spaces in the Lahn river landscape, Germany. Journal of Environmental Management, 309, 114696. doi:https://doi.org/10.1016/j.jenvman.2022.114696
54. Shih, W. Y., Ahmad, S., Chen, Y. C., Lin, T. P., & Mabon, L. (2020). Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustainable Cities and Society, 62. doi:10.1016/j.scs.2020.102415
55. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.
56. Trujillo, L. P. L. (2020). Heat stress in hot underground mines (Doctoral dissertation, The University of Arizona).
57. Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications: A review. Sustainable Cities and Society, 43, 55-76. doi:https://doi.org/10.1016/j.scs.2018.08.009
58. Wang, Z., Xie, Y., Mu, M., Feng, L., Xie, N., & Cui, N. (2022). Materials to Mitigate the Urban Heat Island Effect for Cool Pavement: A Brief Review. Buildings, 12(8), 1221.
59. Yoshida, S., Yoshida, A., & Kinoshita, S. (2020). Chapter 5 - Evaluation methods of adaptation cities. In H. Takebayashi & M. Moriyama (Eds.), Adaptation measures for urban heat islands (pp. 115-159). Academic Press.
60. Zhang, Y., Murray, A. T., & Turner II, B. (2017). Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landscape and Urban Planning, 165, 162-171.
61. Zuo, J., Pullen, S., Palmer, J., Bennetts, H., Chileshe, N., & Ma, T. (2015). Impacts of heat waves and corresponding measures: A review. Journal of Cleaner Production, 92, 1-12. doi:10.1016/j.jclepro.2014.12.078
62. 王安強、黃國倉、曾毅振、陳盈樺、徐虎嘯、王家瑩、陳世禎、李宜臻 (2008)。 綠建築對都市熱島緩和及舒適度提升之量化效益評估研究。
63. 王思方(2018)。桃園土地利用變遷對人體舒適度的影響(碩士論文)。取自華藝線上圖書館系統。(系統編號U0001-1608201813114000) doi:10.6342/NTU201803813
64. 林建廷(2016)。以局部氣候分區整合風環境與熱環境之都市氣候地圖研究─以台南市為例。(碩士論文。國立成功大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/gwgfbv。
65. 卓吟樺(2017)。都市道路組成與行人熱舒適關係之研究(碩士論文)。取自華藝線上圖書館系統。(系統編號U0001-0108201722254100)doi:10.6342/NTU201702426
66. 科技部、交通部中央氣象局、中央研究院環境變遷研究中心、臺灣師範大學地球科學系(2021)。 因應聯合國最新氣候變遷報告之科學說明與回應。取自https://tccip.ncdr.nat.gov.tw/au_05_one.aspx?aid=20210810143721
67. 徐仲毅、陳怡良、羅雅尹 (2015)。臺灣地區極端高溫的特徵及其分析-以1985年至2014年的人工氣象站溫度為例。發表於天氣分析與預報研討會。
68. 國家災害防救科技中心、科技部 (2017)。臺灣氣候的過去與未來《臺灣氣候變遷科學報告2017—物理現象與機制》。臺灣氣候變遷推估資訊與調適知識平台計畫。
69. 張芳慈(2017)。臺灣地區極端高溫對健康影響之脆弱度及修飾因子分析。(碩士論文。中原大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/pcj7cv。
70. 陳彥勳、李盈潔(2020)。農地景觀特徵之生態系統服務功能初探。農林學報,67(4),233-248。https://doi.org/10.30089/JAF.202012_67(4).0002
71. 黃書禮 (2000). 生態土地使用規劃(第七章)。台北市:詹是書局。
72. 黃書禮、游輝禎、鄭秀藝 (1988)。土地使用適宜性分析-評估方法與應用。都市與計劃, 15, 1-29。
73. 臺南市氣候變遷調適計畫 (2020)。 臺南市氣候變遷調適計畫-2020修正版 (第 2-1-6-3頁): 臺南市政府。
74. 賴湘文、邱英浩、高立新、王价巨(2016)。都市街廓特徵與人體熱舒適之關係研究。都市與計劃,43(1),89-114。https://doi.org/10.6128/CP.43.1.89
75. 戴政安、李泳龍、姚志廷(2014)。都市防災生活圈服務潛力之區位問題研究。建築與規劃學報,15(2&3),83-109。https://www.airitilibrary.com/Article/Detail?DocID=16068238-201412-201502130038-201502130038-83-109
76. 謝東佑(2016)。氣候變遷對物種、生態系統影響及其管理策略之探討。台灣林業科學,31(3),227-255。https://doi.org/10.7075/TJFS.201609_31(3).0007.