簡易檢索 / 詳目顯示

研究生: 倪鼎勛
Ni, Ding-Xung
論文名稱: 極低頻電磁場對乳腺癌細胞凋亡影響
Effects of Extremely Low Frequency Electromagnetic Field on Apoptosis of Breast Cancer Cells
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 40
中文關鍵詞: 細胞凋亡人體乳腺癌細胞極低頻電磁場
外文關鍵詞: MDA-MB-231, cancer cells, apoptosis
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要利用流式細胞儀分析細胞凋亡型態,並深入探討鈣離子濃度對於細胞內的影響。本實驗使用7.83Hz掃頻區間,磁場強度1mT,暴露時間採取48小時,且在暴露時間內開關切換時間長度為6小時。在此實驗條件下,我們發現到低頻電磁場對於癌細胞影響力甚大,利用MTT assay量測細胞存活率僅30%。我們想了解到低頻電磁場對於細胞整體到底是破壞性或非破壞性。利用流式細胞儀可分析出細胞型態與結構,且透過Annexin V 和 PI染劑可觀察到細胞凋亡特性,在這細胞凋亡情況下又可分為大致兩種(早期凋亡,晚期凋亡)。基本上受EMF暴露後細胞群都落在這兩種區間範圍內。鈣離子在細胞內扮演相當重要的腳色,主要調控各種生物效應,例如細胞增生、細胞壞死、細胞凋亡等等,利用高通量螢光顯微藥物開發系統,可利用光學鏡頭以及螢光雷射量測細胞內鈣離子濃度,分析細胞內鈣離子是否受EMF影響下而上升,使細胞內外離子濃度不均,進而造成凋亡效應。細胞走向凋亡途徑可能造成DNA損傷,使得粒線體膜通透後,形成一連串凋亡途徑。本實驗未經藥物影響可讓細胞走向凋亡途徑,可說是相當成功。

    In this paper, flow cytometry was used to analyze the apoptosis pattern. And further study of the effect of calcium ion concentration on the cells. This experiment uses a 7.83 Hz wave frequency range with a magnetic field strength of 1mT and an exposure time of 48 hours. And the switching time is 6 hours during the exposure time. Under the experimental conditions. We found that low frequency electromagnetic fields have a great influence on cancer cells. Cell viability was only 30% using by MTT assay. We want to know that low-frequency electromagnetic fields are destructive or non-destructive to the whole cell. Cell type and structure can be analyzed by flow cytometry. Apoptosis characteristics can be observed by Annexin V and PI. In this case of apoptosis, it can be divided into two types (Early apoptosis, Late apoptosis). Calcium ions play a very important role in the cell, mainly regulating various biological effects, such as cell proliferation, cell necrosis, apoptosis, etc. Using the optical lens & fluorescent laser to measure intracellular calcium ion concentration, analyze whether intracellular calcium ions are affected by EMF. This experiment can make the cells go to the apoptotic pathway without the influence of drugs, which is quite successful.

    CONTENTS 中文摘要 ............ I ABSTRACT ............ II ACKNOWLEDGEMENT ............ III CONTENTS ............ IV LIST OF FIGURE........... VI CHAPTER 1 INTRODUCTION ........... 1 1-1 Background and motivation .......... 1 1-1-1 Background ........... 1 1-1-2 Motivation ........... 3 1-2 Introduction of ELF-EMF .......... 4 1-3 Ca2+ influx in cancer cells .......... 6 1-4 Apoptosis pathway .......... 7 1-5 Flow Cytometry experiment .......... 8 CHAPTER 2 MATERIAL AND METHOD.......... 11 2-1 Cell line ........... 11 2-2 Schumann wave device design ......... 12 2-2-1 Frequency parameter of signal ......... 13 2-2-2 Magnetic field .......... 15 2-3 Cell analysis method .......... 18 2-3-1 MTT assay ........... 18 2-3-2 Optical density value (O.D value) ......... 18 2-3-3 Intracellular calcium fluorescence measurement ........ 19 2-3-4 Flow cytometry experiment ......... 20 2-3-5 Statistical analysis .......... 20 CHAPTER 3 EXPERIMENTAL SETUP .......... 21 3-1 Experimental setup .......... 21 CHAPTER 4 EXPERIMENT RESULT AND DISCUSSION ........ 25 4-1 Experiment results .......... 25 4-1-1 Experiment results of the Schumann frequency ........ 25 4-2 Discussions of experiment results ......... 31 CHAPTER 5 CONCLUSION .......... 35 REFERENCES ............ 35

    [1] Tomenius, Lennart. "50‐Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 7.2 (1986): 191-207.

    [2] Akasofu, S-I. "Energy coupling between the solar wind and the magnetosphere." Space Science Reviews 28.2 (1981): 121-190.

    [3] Williams, Earle R. "The Schumann resonance: A global tropical thermometer." Science 256.5060 (1992): 1184-1187.

    [4] Fanelli, C., et al. "Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx." The FASEB journal 13.1 (1999): 95-102.

    [5] Destefanis, Michele, et al. "Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines." International journal of radiation biology 91.12 (2015): 964-972.

    [6] Simko, M., et al. "Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 19.2 (1998): 85-91.

    [7] Berg, Hermann. "Problems of weak electromagnetic field effects in cell biology." Bioelectrochemistry and bioenergetics 48.2 (1999): 355-360.

    [8] Brighton, Carl T., et al. "Signal transduction in electrically stimulated bone cells." JBJS 83.10 (2001): 1514-1523.

    [9] Cifra, Michal, Jeremy Z. Fields, and Ashkan Farhadi. "Electromagnetic cellular interactions." Progress in biophysics and molecular biology 105.3 (2011): 223-246.

    [10] Loewenstein, Wo R., and Y. Kanno. "Intercellular communication and the control of tissue growth: lack of communication between cancer cells." Nature 209.5029 (1966): 1248.

    [11] Bułdak, Rafał Jakub, et al. "Short‐term exposure to 50 Hz ELF‐EMF alters the cisplatin‐induced oxidative response in AT478 murine squamous cell carcinoma cells." Bioelectromagnetics33.8 (2012): 641-651.

    [12] Selvamurugan, Nagarajan, et al. "Effects of BMP‐2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression." Journal of Orthopaedic Research 25.9 (2007): 1213-1220.

    [13] Nie, Yunzhong, et al. "Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation." BMC cancer 13.1 (2013): 582.

    [14] Buckner, Carly A., et al. "Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels." PLoS One 10.4 (2015): e0124136.

    [15] Tang, Jing-Yau, et al. "Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells." Electromagnetic biology and medicine 38.2 (2019): 149-157.

    [16] Madkan, Ash, et al. "Steps to the clinic with ELF EMF." Natural Science 1.03 (2009): 157.

    [17] Brighton, Carl T., et al. "Signal transduction in electrically stimulated bone cells." JBJS 83.10 (2001): 1514-1523.

    [18] Ross, Christina L., et al. "The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation." Stem cell research 15.1 (2015): 96-108.

    [19] Wang, Tingting, et al. "Involvement of midkine expression in the inhibitory effects of low‐frequency magnetic fields on cancer cells." Bioelectromagnetics 32.6 (2011): 443-452.

    [20] Zimmerman, Jacquelyn W., et al. "Cancer cell proliferation is inhibited by specific modulation frequencies." British journal of cancer 106.2 (2012): 307.

    [21] Walleczek, J. "Electromagnetic field effects on cells of the immune system: the role of calcium signaling." The FASEB Journal 6.13 (1992): 3177-3185.

    [22] Markov, Marko S. "Angiogenesis, magnetic fields and ‘window effects’." Cardiology 117.1 (2010): 54-56.

    [23] Simko, M., et al. "Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 19.2 (1998): 85-91.

    [24] Lacy-Hulbert, Adam, James C. Metcalfe, and Robin Hesketh. "Biological responses to electromagnetic fields." The FASEB Journal 12.6 (1998): 395-420.

    [25] Focke, Frauke, et al. "DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 683.1-2 (2010): 74-83.

    [26] Simkó, Myrtill, and Mats‐Olof Mattsson. "Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation." Journal of cellular biochemistry 93.1 (2004): 83-92.

    [27] Rodemann, H. Peter, Klaus Bayreuther, and Gerhard Pfleiderer. "The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields." Experimental cell research 182.2 (1989): 610-621.

    [28] Roderick, H. Llewelyn, and Simon J. Cook. "Ca 2+ signalling checkpoints in cancer: remodelling Ca 2+ for cancer cell proliferation and survival." Nature Reviews Cancer 8.5 (2008): 361.

    [29] Berridge, Michael J. "Calcium signalling remodelling and disease." (2012): 297-309.

    [30] Taylor, James T., et al. "Calcium signaling and T-type calcium channels in cancer cell cycling." World journal of gastroenterology: WJG 14.32 (2008): 4984.

    [31] Rao, V. S., et al. "Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways." Radiation research 169.3 (2008): 319-329.

    [32] Lyle, Daniel B., et al. "Calcium uptake by leukemic and normal T‐lymphocytes exposed to low frequency magnetic fields." Bioelectromagnetics 12.3 (1991): 145-156.

    [33] Orrenius, Sten, Boris Zhivotovsky, and Pierluigi Nicotera. "Calcium: Regulation of cell death: the calcium–apoptosis link." Nature reviews Molecular cell biology 4.7 (2003): 552.

    [34] Lehninger, Albert L. "Mitochondria and calcium ion transport." Biochemical Journal 119.2 (1970): 129.

    [35] Orrenius, S., and P. Nicotera. "The calcium ion and cell death." Journal of neural transmission. Supplementum 43 (1994): 1-11.

    [36] Nicoletti, I., et al. "A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry." Journal of immunological methods 139.2 (1991): 271-279.

    [37] Hengartner, Michael O. "The biochemistry of apoptosis." Nature407.6805 (2000): 770.

    [38] Santini, M. T., et al. "Extremely low frequency (ELF) magnetic fields and apoptosis: a review." International Journal of Radiation Biology 81.1 (2005): 1-11.

    [39] Pinton, Paolo, et al. "Calcium and apoptosis: ER-mitochondria Ca 2+ transfer in the control of apoptosis." Oncogene 27.50 (2008): 6407.

    [40] Suresh, Sandhya Varma. Curcumin and EGCG: Potential cancer therapeutics. Diss. 2018.

    [41] Komazaki, Shinji, and Kazuhiro Takano. "Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50‐Hz magnetic field." Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 307.3 (2007): 156-162.

    [42] García‐Sancho, Javier, et al. "Effects of extremely‐law‐frequency electromagnetic fields on ion transport in several mammalian cells." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 15.6 (1994): 579-588.

    [43] Jilka, Robert L., et al. "Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines." Journal of Bone and Mineral Research 13.5 (1998): 793-802.

    [44] Reed, John C. "Bcl-2 and the regulation of programmed cell death." The Journal of cell biology 124.1-2 (1994): 1-6.

    [45] Conti, Pio, et al. "Effect of electromagnetic fields on two calcium dependent biological systems." Journal of Bioelectricity 4.1 (1985): 227-236.

    無法下載圖示 校內:2024-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE