簡易檢索 / 詳目顯示

研究生: 甯威鈞
Ning, Wei-Chun
論文名稱: 半主動壓電式摩擦型調諧質量阻尼器系統混合實驗驗證
Hybrid Testing of a Piezoelectric Friction Controllable Mass Damper System
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 184
中文關鍵詞: 混合實驗振動台實驗半主動控制壓電制動器可變摩擦調諧質量阻尼器
外文關鍵詞: Hybrid Testing, Shaking Table Test:Semi-active control, Piezoelectric Friction Damper:Piezoelectric Friction Controllable Mass Damper
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用半主動壓電式摩擦型調諧質量阻尼器(PFCMD)之可變摩擦特性,進行振動台實驗與混合實驗之比對與驗證,並搭配振動台設備進行混合實驗技術之可行性評估。首先進行主結構裝設PFCMD之振動台實驗,以作為混合實驗結果之基準,接著將主結構拆除,搭配振動台進行PFCMD混合實驗。混合實驗之重要關鍵為量測PFCMD所產生之層間剪力,並回授給主結構數學模型,同時回授PFCMD相對主結構之速度,作為半主動防鎖摩擦( NSF )控制律之正向力計算基準,接著由數學模型計算主結構之絕對位移命令並藉由振動台模擬,重複此步驟至地震歷時結束即完成實驗。根據本文利用實測資料及模擬預估之結果交叉觀察,若混合實驗時振動台能即時模擬正確之主結構絕對加速度反應,則PFCMD系統即會於混合實驗時表現出如振動台實驗之反應結果。由本文之討論可知,不論於被動或半主動控制模式,混合實驗應可得到如振動台實驗相同之結果,故搭配振動台設備進行混合實驗為一可行之方案。

    The main purpose of this thesis is to evaluate the applicability of hybrid test of a piezoelectric friction controllable mass damper system (PFCMD) by comparing its performance with shaking table test. Firstly, a main structure equipped with a PFCMD is installed on a shaking table to find its control performance subjected to different earthquakes. The proposed hybrid tests subjected the same earthquakes are then conducted by replacing the main structure by its numerical model and installing the PFCMD directly on the shaking table. The key interface of hybrid tests is the feedback inter-story shear force between the PFCMD and the main structure. In both shaking table tests and hybrid tests, the Non-Sticking Friction (NSF) control law is adopted to make the friction forces controllable. The result of testing show that if the main structure’s absolute acceleration during hybrid test is similar to the result of shaking table test, PFCMD may behave similar control performance at both hybrid testing and shaking table test. Therefore, the hybrid test of a PFCMD system in replace of its shaking table test is applicable.

    論文摘要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XX 符號表 XXI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文內容 5 第二章 壓電式摩擦型質量調諧阻尼器系統混合實驗理論介紹 8 2.1 結構系統與構造原理 8 2.1.1 滾軸單擺結構系統組成結構介紹 8 2.1.2 壓電式摩擦型調諧阻尼器系統組成結構介紹 8 2.2 振動台實驗系統運動方程式推導 9 2.2.1 雙自由度狀態空間法 9 2.2.2 非線性摩擦力之計算方法 11 2.2.3 雙自由度非線性摩擦計算 13 2.3 PFCMD防鎖摩擦控制律 18 2.4 混合實驗系統運動方程式推導 19 2.4.1 實驗控制端系統運動方程式推導 19 2.4.2 子結構PFCMD運動方程式推導 22 第三章 半主動壓電式摩擦型調諧質量阻尼器振動台實驗 31 3.1 振動台實驗規劃 31 3.2 振動台實驗與設備介紹 32 3.2.1 振動台實驗架構 32 3.2.2 振動台實驗設備 33 3.3 振動台實驗方法與實驗流程 33 3.3.1 RPS系統架設PFCMD系統之振動台實驗 33 3.3.2 PFCMD控制方法 34 3.3.3 結構系統識別實驗 35 3.4 振動台實驗參數驗證 36 3.5 振動台實驗與數值模擬結果驗證 37 3.5.1 被動控制結果驗證 37 3.5.2 半主動控制結果驗證 42 3.6 小結 46 第四章 滾軸單擺結構系統使用壓電式摩擦型調諧阻尼器混合實驗 115 4.1 PFCMD系統混合實驗規劃 115 4.2 混合實驗介紹與流程 116 4.2.1 混合實驗試體與設備與參數介紹 116 4.2.2 混合實驗方法與實驗流程 117 4.3 混合實驗參數驗證 117 4.4 混合實驗與振動台實驗結果比較 118 4.4.1 混合實驗與振動台實驗結果比較 118 4.4.2 振動台效能驗證 120 4.5 數值模擬驗證 122 4.5.1 混合實驗結果驗證 122 4.5.2 實驗訊號驗證 124 4.6 小結 125 第五章 結論與建議 173 5.1 結論 173 5.2 建議 174 參考文獻 176 附錄 180 口試委員意見表 183

    [1] Hakuno, M., Shidawara, M. and Hara, T., “Dynamic destructive test of a cantileverbeam controlled by an analog-computer” Transactions Japan Society of Engineers, 1-9 (1969).
    [2] Takanashi, K. et al., “Nonlinear earthquake response analysis of structures by a computer actuator online system” Transactions Architectural Instruction Japan, 229,77-83 (1975).
    [3] Juan, E. Billie, F., “Model-based strategies for real-time hybrid testing” University of Illinois at Urbana-Champaign, (2007)
    [4] Nakashima et al., “Development of real-time pseudo-dynamic testing” Earthquake Engineering and Structural Dynamics, 21(1):79-92 (1992)
    [5] Chung, W. J., Yun, C. B., Kim, N. S. and Seo., J. W. “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures” Engineering Structures, 365-379 (1999)
    [6] Horiuchi, T., M. Inoue, T. Konno and W. Yamagishi., “Development of a real-time hybrid experimental system using a shaking table - (Proposal of experiment concept and feasibility study with rigid secondary system)” JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing 42: 255-264, (1999b)
    [7] Wang, Y. P., Lee, C. L., Yo, T. H., “Modified state space procedures for pseudodynamic testing” Earthquake Engineering and Structural Dynamics, 30, 59-80 (2001)
    [8] Reinhorn, A.M., M. Bruneau, S.Y. Chu, X. Shao and M.C. Pitman., “Large scale real time dynamic hybrid testing technique -shake tables substructure testing” 2003 ASCE/SEI Structures Congress and Exposition: Engineering Smarter, May 29, 2003 - May 31, 2003. Seattle, WA, United states: American Society of Civil Engineers, 67-72. (2003)
    [9] Reinhorn, A.M., Sivaselvan M.V., Liang Z., Shao X., “Real-time dynamic hybrid testing of structural systems” World Conference on Earthquake Engineering, (2004)
    [10] P. Y. Lin, P. N. Roschke, C. H. Loh and C. P. Cheng., “Semi-active controlled base-isolation system with magnetorheolegical damper and pendulum system” World Conference on Earthquake Engineering, (2004)
    [11] P. Y. Lin, P. N. Roschke, C. H. Loh and C. P. Cheng., “hybrid controlled base-isolation system with Semi-active magnetorheolegical damper and pendulum system” World Conference on Earthquake Engineering, (2004)
    [12] Stefano, S., Gloria, T., Georges, M, and Francisco, J. M., “Experimental investigation on a base isolation system incorporating steel-Teflon sliders and pressurized fluid viscous spring dampers” Earthquake Engineering and Structural Dynamics, 37, 225-242 (2008)
    [13] T.Y. Yang, G. Mosqueda and B. Stojadinovic., “Evaluating the quality of hybrid simulation test using an energy based approach” World Conference on Earthquake Engineering, (2008)
    [14] Juan E. Carrion, B. F. Spencer Jr., Brian M. Phillips., “Real-Time Hybrid Testing of a Semi-Actively Controlled Structure with an MR Damper” American Control Conference, (2009)
    [15] Wang T,Cheng C., “A Model-based Predictor-Corrector Algorithm for Substructure Hybrid Test System” Proceedings of the Ninth Pacific Conference on Earthquake Engineering, (2011)
    [16] Ito A., Kawasaki R., Fujitani H., “Effectiveness of Real Time Hybrid Test in Semi-Active Controlled Base Isolation System”, 日本建築學會構造系論文集, 891-897 (2011)
    [17] Zhaoshuo J., Sung J.K., Plude S. and Christenson R., “Real-time hybrid simulation of a complex bridge model with MR dampers using the convolution integral solution” Smart Materials And Structures, 22 (2013)
    [18] Lu, L. Y., G. L. Lin, C. Y. Lin “Experimental verification of a piezoelectric smart isolation system” Structural Control and Health Monitoring, Vol. 18, No. 8, 869-889. (2011)
    [19] Lu, L. Y., G. L. Lin, C. Y. Lin “Experiment of an ABS-type control strategy for semi-active friction isolation systems.” Smart Structures and Systems, Vol.8, No.5, 501-524. (2011)
    [20] 許敬昀,「摩擦型調諧質量阻尼器系統之混合實驗驗證」,國立成功大學研究所,碩士論文,(2014)
    [21] 何玉泊,「半主動摩擦調諧質量阻尼器之振動台試驗與減振分析」,國立中興大學土木研究所,碩士論文,(2010)
    [22] 許敬昀,「FTMD摩擦型調諧質量阻尼器第二階段混合實驗實驗報告書」,國立成功大學研究所,實驗報告書,(2014)
    [23] 張順益、蔡克銓、陳冠州,「對時間積分之運動方程式在擬動態試驗上之應用」,中國土木水利工程學刊,第617-625頁,(1997)
    [24] 羅仕杰,「記憶體共享光纖網路設備於即時擬動態實驗之初步研究」,國立暨南國際大學土木工程研究所,碩士論文,(2005)
    [25] 李明鴻,「應用快速擬動態試驗技術於非線性含斜撐框架動態反應之模擬與試驗」,國立成功大學土木工程研究所,碩士論文,(2006)
    [26] 林憲良,「降伏型非線性構件之慢速擬動態實驗與數值模擬」,國立成功大學土木工程研究所,碩士論文,(2007)
    [27] 張家瑋,「不同加載速率對擬動態實驗誤差的影響」,國立成功大學土木工程研究所,碩士論文,(2008)
    [28] 顏呈璁,「多重取樣量測對擬動態實驗 誤差之影響」,國立成功大學土木工程研究所,碩士論文,(2009)
    [29] 吳依寰,「摩擦型阻尼器之擬動態實驗與震動台驗證」,國立成功大學土木工程研究所,碩士論文,(2011)
    [30] 簡旭甫,「不同加載速率下摩擦單擺支承之消能行為測試」,國立成功大學土木工程研究所,碩士論文,(2012)
    [31] 朱凱業,「多項式變曲率滑動支承之混合實驗」,國立成功大學土木工程研究所,碩士論文,(2013)
    [32] 盧煉元、林沛暘、林子剛、葉士瑋、莊翔圩、何銘川,「先進減震高架地板於設備防震之應用研究」,99年度國科會專題研究計畫成果報告書,計畫編號 NSC 99-2625-M-327-002 (2011)
    [33] 林錦隆,「半主動隔震系統之抗震應用研究」國立高雄第一科技大學工程科技研究所,碩士論文,(2008)

    無法下載圖示 校內:2020-09-17公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE