簡易檢索 / 詳目顯示

研究生: 劉任翔
Liu, Jen-Hsiang
論文名稱: 內置肋-槽化扭旋片方管流場及熱傳現象數值與實驗研究
An experimental and numerical study of flow field and heat transfer for square duct with slot-rib twisted tape
指導教授: 張始偉
Chang, Shyy-Woei
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 抽氣槽傾斜肋條扭旋片
外文關鍵詞: Perforated Slot, Inclined Rib, Twisted Tape, Heat Transfer Enhancement
相關次數: 點閱:122下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗的目的是為了減少透過扭旋片增強熱傳效率伴隨的壓降損失,將扭旋片設計成擁有成對的傾斜肋條及抽氣槽,通過沿扭旋片上傾斜肋條與抽氣槽產生之模擬流場和壓力場與實驗量測的紐賽數及凡寧摩擦係數進行相關性檢驗。上述的傾斜橫向肋條將傳統垂直肋條後方的循環渦流轉化為螺線式渦流並形成分離流,而傾斜的抽氣槽則使質量,動量和能量能夠在沿扭旋片分隔的兩個軸向渦旋之間進行交換。由扭旋片和傾斜的肋條、抽氣槽相互作用引起的流場機制改善傳熱性能與減少肋條造成的形狀阻力。在雷諾數10,000~50,000範圍內,紐賽數成長至Dittus-Boelter的4.2-3.8倍,此熱傳提升的代價則是凡寧摩擦係數增加至Blasius的32.5-40.2倍。與先前鋸齒狀(肋條)扭旋片的管流相比,在方形管中由沿著扭旋片上傾斜肋條、抽氣槽所引起的熱傳強化幾乎保持相同,但凡寧摩擦係數有顯著的減少。傾斜的肋槽達到空氣熱性能改進的結果預期能在熱交換器上加入並應用。為了幫助這些應用,因而設計經驗公式用於計算由方形管內插入傾斜肋槽扭旋片增強之平均紐賽數及凡寧摩擦係數。

    In the literature, the heat transfer enhancements (HTE) and pressure drop augmentations are simultaneously incurred by using the modified twist-tapes with ribs. By using the regularly spaced or perforated twist-tapes, the pressure drop penalties are moderated with the HTE effectiveness weakened. As an attempt to moderate the considerable pressure-drop augmentations caused by a ribbed twist-tape, the present study proposed the twist-tape with the inclined ribs and slots as a new type of twisted tape insert with the associated heat-transfer and pressure-drop performances investigated. With a conventional twisted tape in a tube to separate the flow stream along two spiral pathways, the newly slot-rib twisted tape permits the mass, momentum and energy exchanges through the tape and provides the perforation effect to reduce the flow resistances owing to large pressure gradients. The aerothermal performances of the rib-slot twist tape at the Reynolds number of 10000, 20000, 30000, 40000, 50000 with air as the coolant are numerically and experimentally studied. The results show that, with the Reynolds numbers in the range of 10000 to 50000, the Nusselt numbers are elevated to 3.8 to 4.2 times of the Dittus-Boelter correlation (plain tube) values with the friction factors raised to 32.5 to 40.2 times of the Blasius equation (plain tube) levels. With the inclined ribs and slots, the friction factor augmented by the present rib-slot twist-tape is reduced from that caused by the ribbed twist-tape whereas the heat transfer enhancements generated by the ribbed and the present rib-slot twist-tapes are similar. With the reduced pressure-drop penalties and the raised HTE effectiveness, the aerothermal performance factors attributed to the present rib-slot twist-tape are improved from many types of twisted tapes. Based on the experimental data generated, the empirical correlations for calculating the Nusselt number, Fanning friction factor and heat transfer power ratio for the square duct fitted with the present rib-slot twist-tape are proposed for relevant applications.

    目錄 摘要 I Extended Abstract II 誌謝 XIX 表目錄 XXII 圖目錄 XXII 符號表 XXIV 第1章 前言與文獻回顧 1 1.1 扭旋片簡介 1 1.2 平滑扭旋片 2 1.3 抽氣槽型扭旋片 4 1.4 切口型扭旋片 5 1.5 複合熱傳強化 7 第2章 實驗設備與研究方法 9 2.1實驗方法 9 2.2 實驗設備 10 2.3 實驗程序和數據處理 15 第3章 結果與討論 25 3.1 模擬結果 25 3.1.1 流場特徵 25 3.1.2 速度分佈特徵 27 3.1.3 紊流動能與渦量的特徵 33 3.1.4 壁面剪應力的分佈 34 3.1.5 速度對應壓力在流場中的變化 36 3.1.6 溫度分佈特徵 38 3.2 實驗結果 41 3.2.1 熱傳分佈特徵 41 3.2.2 熱傳性能與摩擦係數比較 47 結論 52 參考文獻 55

    [1] E. Smithberg and F. Landis, Friction and forced convection heat transfer characteristics in tubes with twisted tape swirl generators, ASME J. Heat Transfer 86 (1964) 39-49.
    [2] M.-R.M. Drizius, R.K. Shkema, A.A. Shlanciauskas, Heat transfer in a twisted stream of water in a tube, Int. Chemical Engineering 20 (1980) 486-489.
    [3] R.M. Manglik and A. E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—transition and turbulent flows, ASME J. Heat Transfer 115 (1993) 890-896.
    [4] S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, P. Promvonge, Convective heat transfer in a circular tube with short-length twisted tape insert, Int. Communications in Heat and Mass Transfer 36 (2009) 365-371.
    [5] A. T. Wijayanta, Mirmanto, M. Azizc, Heat transfer augmentation of internal flow using twisted tape insert in turbulent flow, Heat Transfer Engineering 41 (2020) 1288-1300.
    [6] G. Liu, C. Yang, J. Zhang, H. Zong, B. Xu, J. Qian, Internal flow analysis of a heat transfer enhanced tube with a segmented twisted tape insert, MPDI Energies 13 (2020) 207 1-16.
    [7] S. Eiamsa-ard, K. Yongsiri, K. Nanan, C. Thianpong, Heat transfer augmentation by helically twisted tapes as swirl and turbulence promoters, Chemical Engineering and Processing 60 (2012) 42-48.
    [8] C. Qi, M. Liu, J. Tang, Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency, Energy Conversion and Management 192 (2019) 243-268.
    [9] S.M. Abolarin, M. Everts, J.P. Meyer, Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime, Int. J. Heat and Mass Transfer 133 (2019) 203-217.
    [10] A.S. Dalkılıç, B. Uluç, M.S. Cellek, A. Celenc, C. Jumpholkul, K.S. Newaz, S. Wongwises, Single phase flow heat transfer characteristics of quad-channel twisted tape inserts in tubes, Int. Communications in Heat and Mass Transfer 118 (2020) 104835 1-14.
    [11] S. Singh, L. Pandey, H. Kharkwal, H. Sah, Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape, Experimental Heat Transfer 33 (2020) 510-525.
    [12] M.H. Fagr, Q.A. Rishak, K.S Mushatet, Performance evaluation of the characteristics of flow and heat transfer in a tube equipped with twisted tapes of new configurations, Int. Journal of Thermal Sciences 153 (2020) 106323 1-9.
    [13] S. Armbruster, F. Stockmeier, M. Junker, M. Schiller-Becerra, S. Yüce, M. Wessling, Short and spaced twisted tapes to mitigate fouling in tubular membranes, Journal of Membrane Science 595 (2020) 117426 1-10.
    [14] S. Feng, X. Cheng, Q. Bi, H. Pan, Z. Liu, Experimental investigation on convective heat transfer of hydrocarbon fuel in circular tubes with twisted-tape inserts, Int. J. Heat and Mass Transfer 146 (2020) 118817 1-11.
    [15] P. Sneha, T. Subrahmanyam, S.V. Naidu, A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis, Int. J. Thermal Sciences 136 (2019) 530-538.
    [16] S.W. Chang, T.L. Yang, J.S. Liou, Heat transfer and pressure drop in tube with broken twisted tape insert, Experimental Thermal and Fluid Science 32 (2007) 489-501.
    [17] M.M.K. Bhuiya, M.S.U. Chowdhury, M. Saha, M.T. Islam, Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts, Int. Communications in Heat and Mass Transfer 46 (2013) 49-57.
    [18] S. Gunes and E. Karakaya, Experimental investigation on heat transfer enhancement with loose-fit perforated twisted tapes, Heat Transfer Research 50 (2019) 821-837.
    [19] P. Samruaisin, K. Kunnarak, V. Chuwattanakul, S. Eiamsa-ard, Effect of sparsely placed twisted tapes installed with multiple‑transverse twisted‑baffles on heat transfer enhancement, Journal of Thermal Analysis and Calorimetry140 (2020)1159-1175.
    [20] T. Dagdevir and V. Ozceyhan, An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts, Int. J. Thermal Sciences 159 (2021) 106564 1-13.
    [21] K. Ruengpayungsak, M. Kumar, V. Chuwattanakul, S. Eiamsa-ard, Experimental study of the effects of inclusion of rectangular-cut twisted tapes on heat transfer and pressure drop in a round tube, Arabian Journal for Science and Engineering 44 (2019) 10303-10312.
    [22] P. Murugesan, K. Mayilsamy, S. Suresh, P.S.S. Srinivasan, Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert, Int. Communications in Heat and Mass Transfer 38 (2011) 329-334.
    [23] M.E. Nakhchi, and J.A. Esfahani, Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape, Powder Technology 339 (2018) 985-994.
    [24] B. Kumar, M. Kumar, A. K. Patil, S. Jain, Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: An experimental study, Experimental heat transfer 32 (2019) 524-544.
    [25] B. Kumar, M. Kumar, A. K. Patil, S. Jain, M. Kumar, Effects of double V cuts in perforated twisted tape insert: an experimental study, Heat Transfer Engineering 41 (2020) 1473-1484.
    [26] A. Saravanan and S. Jaisankar, Heat transfer augmentation techniques in forced flow V-trough solar collector equipped with V-cut and square cut twisted tape, Int. J. Thermal Sciences 140 (2019) 59-70.
    [27] A.T. Wijayanta, Pranowo, Mirmanto, B. Kristiawan, M. Aziz, Internal flow in an enhanced tube having square-cut twisted tape insert, MPDI Energies 12 (2019) 306 1-12.
    [28] M.E. Nakhchi, M. Hatami, M. Rahmati, Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes, Applied Thermal Engineering 180 (2020) 115863 1-8.
    [29] W.-X. Chu, C.-A. Tsai, B.-H. Lee, K.-Y. Cheng, C.-C. Wang, Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations, Applied Thermal Engineering 172 (2020) 115148 1-10.
    [30] S. Eiamsa-ard, K. Wongcharee, P. Eiamsa-ard, C. Thianpong, Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes, Experimental Thermal and Fluid Science 34 (2010) 1151-1161.
    [31] P. Promvonge and S. Eiamsa-ard, Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert, Int. Communications in Heat and Mass Transfer 34 (2007) 849-859.
    [32] P. Promvonge, Thermal augmentation in circular tube with twisted tape and wire coil turbulators, Energy Conversion and Management 49 (2008) 2949-2955.
    [33] A. Kumar, S. Singh, S. Chamoli, M. Kumar, Experimental investigation on thermo-hydraulic performance of heat exchanger tube with solid and perforated circular disk along with twisted tape insert, Heat Transfer Engineering 40 (2019) 616-626.
    [34] S.W. Chang, Y.J. Jan, J.S. Liou, Turbulent heat transfer and pressure drop in tube fitted with serrated twisted-tape, Int. J. Thermal Sciences 46 (2007) 506-518.
    [35] S.W. Chang, P.S. Wu, W. L. Cai, C.-H. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, Int. J. Heat and Mass Transfer 166 (2021) 120809 1-21.
    [36] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mechanical Engineering 75 (1953) 3-8.
    [37] J.H. Kim, T.W. Simon, R. Viskanta, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results, ASME J. Heat Transfer 115 (1993) 5-6.
    [38] Fluent Inc. FLUENT 19.2 Ansys Help – Fluent Theory Guide (2019).
    [39] S.W. Chang, T. W. Chen, Y. W. Chen, Detailed heat transfer and friction factor measurements for square channel enhanced by plate insert with inclined baffles and perforated slots, Applied Thermal Engineering 159 (2019) 113856 1-15

    下載圖示 校內:2022-05-20公開
    校外:2022-05-20公開
    QR CODE