簡易檢索 / 詳目顯示

研究生: 胡孟慈
Hu, Meng-Tzu
論文名稱: 拇指執行前後向鬆動術之生物力學分析與模型建立
Biomechanical Analysis and Model Construction of the Thumb during Simulated Posteroanterior Glide Manipulation
指導教授: 蘇芳慶
Su, Fong-Chin
共同指導: 徐阿田
Hsu, Ar-Tyan
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 98
中文關鍵詞: 姆指動作學動力學鬆動術生物力學模型
外文關鍵詞: thumb, kinematics, kinetics, manipulation, biomechanical model
相關次數: 點閱:125下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多健康相關行業常會因為使用徒手治療技巧治療病患而造成大拇指疼痛的問題,例如: 物理治療師使用後前向指尖施力的鬆動術技巧來治療病患。這樣的技巧需要作用於大拇指周圍的肌肉維持穩定度來協助力量傳遞到指尖。然而,目前為止,執行這樣徒手技巧時拇指的生物力學,則尚未被討論,故本研究想要透過人體實驗與建立模型來探討拇指在執行此類技巧時其各關節之生物力學,以提供治療師作為預防大拇指受傷之參考。此研究包含3個部分: (1)探討不同經驗的族群在執行3個後前向滑動鬆動術技巧時的運動學與動力學 (2)探討不同柔軟度的受試者,在執行後前向滑動鬆動術技巧與日常生活的捏取技巧時,生物力學上的差異 (3)以收集的資料建構一生物力學模型,來估計大拇指各個關節的受力,與大拇指周圍8條肌肉施力大小。
    第一部分,收取23名無徒手經驗受試者,與15名有至少3年骨科徒手治療經驗的治療師,在6軸力板上執行3個後前向滑動鬆動術技巧,包括無支撐後前向滑動技巧(unsupported PA glide),四指支撐之後前向滑動技巧(PA glide with digits supported),以及食指支撐大拇指指間關節之後前向滑動技巧(PA glide with thumb interphalangeal joint supported by index finger)。利用表面肌電圖與動作分析系統,收取指尖施力大小、8條拇指肌肉的肌電活動,與拇指各關節運動學。經驗與執行技巧可影響大拇指內在肌肉活動與關節角度。有經驗的治療師會使用較少的內在肌肉活動,產生相同於無經驗者的力量,無經驗受試者則會依照技巧的本身的穩定度來增加內在肌肉的活動。有經驗治療師會傾向將腕掌關節擺在屈曲的位置下執行鬆動術技巧,而無經驗者則會擺在接近正中的位置下執行。建議柔軟度大的治療師執行較穩定(力量誤差小)的技巧(食指支撐大拇指指間關節之後前向滑動技巧)來將大拇指掌指關節擺在屈曲姿勢下防止傷害。
    第二部分,33位健康受試者(柔軟度大組: 16位; 柔軟度小組:17位),分別在六軸力板上,執行無支撐後前向滑動技巧、四指支撐之後前向滑動技巧 、側向捏取、指尖捏取等4個技巧,收取大拇指8條肌肉表面肌電圖、指間力量與大拇趾各關節動作。執行技巧對於指間產生力量與肌電圖有影響。不同的指間關節柔軟度族群對於指間產生力量、肌肉活動無顯著影響。柔軟度小的受試者傾向將指間關節與掌指關節擺位在接近正中(±5°)來執行2個鬆動術技巧。屈姆指短肌、屈姆指長肌和內收肌的肌肉活動,顯示這些肌肉在捏取技巧時是主要動作肌,然而,在執行鬆動術技巧時,這些肌肉會轉為提供維持大姆指穩定的角色。
    第三部分,依據第一部分收集到的資料,建構一大姆指生物力學模型,來估算執行無支撐後前向滑動技巧、四指支撐之後前向滑動技巧時,大姆指各關節受力與8條肌肉力量。在執行鬆動術技巧時,有經驗治療師所有關節的關節接觸力都比無經驗者大,而2個族群的腕掌關節是關節接觸力受力最大的關節;而無經驗受試者相較於有經驗受試者,會產生較大的肌肉力量,特別是內在肌肉群(屈指短肌、伸指短肌、外展姆指短肌)。

    Manual therapists frequently employ manual techniques such as posterior/anterior (PA) glide techniques to treatment patient with joint hypomobility disorders. Such tasks involve force generated at the tip of the thumb with the relevant muscles assuming the role of stabilizers for the multiarticular chain of the thumb. However, the exact roles of thumb muscles and kinematics while performing manual tasks are not clear. This part of the study had three objectives: (1) To investigate the effect of the experience and different techniques on kinematics and kinetics while performing three posteroanterior (PA) glide mobilization techniques. (2) To investigate the effect of the IP joint flexibility (hitchhiker’s thumb or not) and techniques (two PA glide mobilization and two pinch tasks) on thumb biomechanics. (3) To construct a biomechanical model to estimate forces acting on the joints and individual muscles of the thumb.
    In part1 (chapter 2), 23 novice participants without any exposure to manual therapy and 15 physical therapists with at least 3 years of orthopedic experience participated. Each participant exerted maximum thumb-tip force on a 6-axis load cell with three different posterior-anterior (PA) glide techniques including unsupported PA glide (T1), PA glide with digits supported (T2) and PA glide with thumb interphalangeal (IP) joint supported by index finger (T3). Surface electromyographic activities of flexor pollicis brevis (FPB), adductor pollicis (ADP), abductor pollicis brevis (APB), and first dorsal interosseus (1stDI)) and kinematics of each thumb joint were collected for analyses. The magnitude of the thumb-tip force generated is influenced not only by the differences in technique employed by the therapists, but also by the general flexibility of the therapists. While participants of both groups generated the same magnitude of force, experienced participants generated less intrinsic muscle activity with a more flexed position at the CMC joint during PA glide mobilization. Novice participants increased activity of their intrinsic muscles in accordance with the stability status of the technique and performed with the CMC angles closer to the neutral position. Physical therapists with excessive thumb flexibility are advised to perform PA glide with IP joint supported (T3) which generated a greater tip force and was more stable among the three techniques employed in the present study. It produced the smallest relative errors in the thumb tip force generated and was executed in a more flexed position in the metacarpophalangeal (MCP) joints.
    In part 2 (Chapter 3), 33 apparently healthy young participants (hitchhiker group: 8 males and 8 females; non-hitchhiker group: 8 males and 9 females) participated. Each participant exerted 1) thumb tip force on a 6-axis load cell from 25% to 100% maximum force at a 25% increments with two PA glide techniques (unsupported PA glide, T1, and PA glide with digits support, T2); and 2) tip pinch and lateral pinch tasks on a single axis load cell. Surface EMG of extensor pollicis longus (EPL), extensor pollicis brevis (EPB), flexor pollicis longus (FPL), flexor pollicis brevis (FPB), adductor pollicis (ADP), abductor pollicis longus (APL), abductor pollicis brevis (APB), and first dorsal interosseus (1stDI) were collected. Signficant main effects of technque on normalized thumb-tip force generated and on normalized EMG at all force levels except at 25% of maximum were shown. No obvious group (with or without hitchhiker’s thumb) difference (F=0.894, p=0.352) were revealed. While executing pinch tasks, FPL is required to help distal phalanx of the thumb to resist the forces exerted by the index. A greater ADP EMG activity was observed as it serves as a prime mover and is in a mechanically advantageous position. The EMG activity level of the FPB, FPL and ADP suggest that these muscles assume the roles of prime movers in pinch type of activities. However, their roles change to that of stabilizers during the performance of PA glide techniques. Non-hitchhikers seem to be more capable of maintaining the thumb in more neutral position.
    In part 3 (Chapter 4), a biomechanical model was constructed to estimate joint constraint forces and individual muscle forces while performing unsupported PA glide (T1) and PA glide with digits support (T2). The mobilization technique results in a greater volar-ulnar directed force at the MCP joint and the largest contact forces were found at CMC joint in both groups. In both techniques, larger joint contact force in all three joints and smaller muscle forces (especially FPB, APB, EPB) were estimated in the Experienced Group than the Novice Group. This model, however, failed to estimate a muscle force pattern consistent with the activation pattern of the thumb muscles identified by surface EMG.

    中文摘要 I ABSTRACT III TABLE LIST XII FIGURE LIST XIV CHAPTER 1 Introduction 1.1 Anatomy of the thumb and background 1 1.2 Dissertation Research Proposal Organization 3 CHAPTER 2 Biomechanical Study of the Thumb during Simulated Posteroanterior Glide Mobilization 2.1 Brief Introduction and Aim 6 2.2 Methods 9 2.2.1 Participants 9 2.2.2 Instrumentations 9 2.2.3 Experimental Procedure 10 2.3 Part I: Effect of general flexibility on thumb-tip force generation - implication for mobilization and manipulation 2.3.1 Data and Statistical Analyses 14 2.3.2 Results 15 2.3.3 Discussions 20 2.3.4 Conclusion 25 2.4 Part II: Effect of prior experience and task stability on the intrinsic muscle activity of the thumb 2.4.1 Data and Statistical Analyses 26 2.4.2 Results 27 2.4.3 Discussions 31 2.4.4 Conclusion 35 2.5 Part III: Kinematic Analyses of the Thumb during Simulated Posteroanterior Glide Mobilization 2.5.1 Data and Statistical Analyses 36 2.5.2 Results 37 2.5.3 Discussions 42 2.5.4 Conclusion 46 CHAPTER 3 Biomechanical Study of the Thumb while Performing Thumb-Tip Pressing and Pinch Tasks 3.1 Brief Introduction and Aim 48 3.2 Methods 50 3.2.1 Participants 50 3.2.2 Instrumentations 51 3.2.3 Experimental Procedure 52 3.2.4 Data and Statistical Analyses 56 3.3 Results 57 3.4 Discussions 63 3.5 Conclusion 66 CHAPTER 4 Anatomic Model of the Thumb 4.1 Brief Introduction and Aim 67 4.2 Methods 68 4.2.1 Biomechanical model of the thumb 68 4.3 Results 72 4.4 Discussions 78 4.5 Conclusion 83 Summary 84 REFERENCE 87

    1.Ateshian GA, Ark JW, Rosenwasser MP, Pawluk RJ, Soslowsky LJ, Mow VC Contact areas in the thumb carpometacarpal joint. J Orthop Res. 13(3):450-8; 1995.
    2.Anderson KG and Behm DG. Maintenance of EMG activity and loss and loss of force output with instability. Journal of Strength and Conditioning Research. 18(3): 637-640; 2004
    3.Barbenel JC. The biomechanics of the temporomandibular joint: a theoretical study. J Biomech. 5(3):251-6; 1972.
    4.Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 32(5):413-8; 1973.
    5.Brand PW, Beach RB, Thompson DE. Relative tension and potential excursion of muscles in the forearm and hand. J Hand Surg Am. 6(3):209-19; 1981
    6.Basmajian JV, De Luca CJ. Muscle Alive. 5th ed. Baltimore: William & Wilkins. p.187-222; 1985
    7.Brand PW, Hollister A. Clinical mechanics of the hand. 2nd ed. St Louis: Mosby. p. 192-352; 1993.
    8.Burgar CG, Valero-Cuevas FJ, Hentz VR. Fine-wire electromyographic recording during force generation- Application to index finger kinesiologic studies. Am J Phys Med Rehabil. 76(6):494-501; 1997.
    9.Bettinger PC, Linscheid RL, Berger RA. Cooney WP 3rd. An KN. An anatomic study of the stabilizing ligaments of the trapezium and trapeziometacarpal joint. J Hand Surg [Am]. 24(4):786-98, 1999
    10.Bettinger PC, Smutz WP, Linscheid RL, Cooney WP 3rd, An KN. Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg Am. 25(6):1085-95; 2000.
    11.Bettinger PC, Berger RA. Functional ligamentous anatomy of the trapezium and trapeziometacarpal joint (gross and arthroscopic) Hand Clinics 17(1):13-43; 2001.
    12.Behm DG, Anderson K, Curnew RS. Muscle force and activation under stable and unstable conditions. Journal of Strength and Conditioning Research 16(3):416-22; 2002.
    13.Buckinham G, Das R, Trott P. Position of undergraduate students’ thumbs during mobilization is poor: an observation study. The Australian Journal of Physiotherapy 53:55-9; 2007.
    14.Beaudette B, Chester VL. Upper extremity kinematics in pediatric and young adult populations during activities of daily living. J Med Biol Eng. 34(5):448-454; 2014.
    15.Cooney WP III, Chao EY. Biomechanical analysis of static force in the thumb during hand function.J Bone Joint Surg Am. 59(1):27-36; 1977.
    16.Cooney WP III, An KN, Daube JR, Askew LJ. Electromyographic analysis of the thumb: a study of isometric forces in pinch and grasp. J Hand Surg Am 10(2):202-10; 1985.
    17.Cohen J. Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic;1988.
    18.Chao EYS, An K-N, Cooney WP, Linscheid RL. Biomechanics of the hand. 1st ed. Singapore: World Scientific. p.33-35, 157-160; 1989
    19.Corcos DM, Jaric S, Agarwal GC, Gottlieb GL. Principles for learning single-joint movements. I. Enhanced performance by practice. Exp Brain Res 94(3):499-513; 1993.
    20.Cromie JE, Robertson VJ, Best MO. Work-related musculoskeletal disorders in physical therapists: prevalence, severity, risks, and responses. Physical Therapy 80(4):336-51; 2000.
    21.Caragianis S. The prevalence of occupational injuries among hand therapists in Australia and New Zealand. J Hand Ther 15(3):234-41; 2002.
    22.Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics 24(4):327-40; 2009.
    23.Darling WG and Cooke JD. Changes in the variability of movement trajectories with practice. J Mot Behav. 19(3):291-309; 1987.
    24.Disselhorst-Klug C, Schmitz-Rode T, Rau G. Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clinical Biomechanics 24(3):225-35; 2009.
    25.Eaton RG, Littler JW. A study of the basal joint of the thumb. Treatment of its disabilities by fusion. J Bone Joint Surg Am. 51(4):661-8; 1969.
    26.Eaton R, Littler JW. Ligament reconstruction for the painful thumb carpometacarpal joint. J Bone Joint Surg Am. 55:1655-66; 1973
    27.Eaton RG, Glickel SZ. Trapeziometacarpal osteoarthritis. Staging as a rationale for treatment. Hand Clin. 3(4):455-71; 1987.
    28.Frank WE, Dobyns J. Surgical pathology of collateral ligamentous injuries of the thumb. Clin Orthop Relat Res 83:102-14; 1972.
    29.Fattapposta F, Amabile G, Cordischi MV, Di Venanzio D, Foti A, Pierelli F, D'Alessio C, Pigozzi F, Parisi A, Morrocutti C. Long-term practice effects on a new skilled motor learning: an electrophysiological study. Electroencephalogr Clin Neurophysiol 99(6):495-507; 1996.
    30.Fowler NK, Nicol AC. Interphalangeal joint and tendon forces: normal model and biomechanical consequences of surgical reconstruction. J Biomech. 33(9):1055-62; 2000.
    31.Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible stastical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 39(2):175-91; 2007.
    32.Glass B, Kistler JC. Distal hyper-extensibility of the thumbs. Acta Genet Stat Med. 4(2-3):192-206; 1953.
    33.Gabriel DA. Changes in kinematic and EMG variability while practicing a maximal performance task. J Electromyogr Kinesiol 12(5):407-12; 2002.
    34.Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine 36(2):133-49; 2006.
    35.Greenwood NL, Duffell LD, Alexander CM, McGregor AH. Electromyographic activity of pelvic and lower limb muscles during postural tasks in people with benign joint hypermobility syndrome and non hypermobile people. A pilot study. Man Ther. 16(6):623-8; 2011.
    36.Gupta S, Michelsen-Jost H. Anatomy and function of the thenar muscles. Hand Clin 28(1):1-7; 2012.
    37.Harding DC, Brandt KD, Hillberry BM. Finger joint force minimization in pianists using optimization techniques. J Biomech. 26(12):1403-12; 1993.
    38.Hu MT. Kinematic and electromyographic analyses of the thumb during simulated P-A glide manipulation [dissertation]. Taiwan: National Cheng Kung University; 2005.
    39.Hunter DJ, Zhang Y, Sokolove J, Niu J, Aliabadi P, Felson DT. Trapeziometacarpal subluxation predisposes to incident trapeziometacarpal osteoarthritis(OA): the Framingham Study. Osteoarthritis Cartilage 13:953-957; 2005
    40.Hislop HJ, Montgomery J. Daniels and Worthingham's muscle testing: techniques of manual examination. 8th ed. St. Louis, Mo.: Saunders. p141-177; 2007.
    41.Heintz S, Gutierrez-Farewik EM. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Gait & Posture 26:279-288; 2007
    42.Hu MT, Hsu AT, Lin SW, Su FC. Effect of general flexibility on thumb-tip force generation - implication for mobilization and manipulation. Man Ther. 14(5):490-5; 2009.
    43.Hu MT, Su FC, Hsu AT. Effect of prior experience and task stability on the intrinsic muscle activity of the thumb. Man Ther. 19(5):484-9; 2014.
    44.Halilaj E, Rainbow MJ, Got C, Schwartz JB, Moore DC, Weiss AP, Ladd AL, Crisco JJ. In vivo kinematics of the thumb carpometacarpal joint during three isometric functional tasks. Clin Orthop Relat Res. 472(4):1114-22; 2014.
    45.Hu MT, Hsu AT, Su FC. Kinematic analyses of the thumb during simulated posteroanterior glide mobilization. PLoS One. 11(9):e0161624; 2016.
    46.Jonsson H, Valtysdottir ST, Kjartansson O, Brekkan A. Hypermobility associated with osteoarthritis of the thumb base: a clinical and radiological subset of hand osteoarthritis. Ann Rheum Dis. 55(8):540-3; 1996
    47.Johanson ME, Valero-Cuevas FJ, Hentz VR. Activation patterns of the thumb muscles during stable and unstable pinch tasks. J Hand Surg (Am) 26(4):698-705; 2001.
    48.Jang Y, Chi CF, Tsauo JY, Wang JD. Prevalence and risk factors of work-related musculoskeletal disorders in massage practitioners. J Occup Rehabil 16(3):425e38; 2006.
    49.Koebke J. A biomechanical and morphological analysis of human hand joints. Adv Anat Embryol Cell Biol. 80:1-85; 1983.
    50.Kaufman KR, An KN, Litchy WJ, Cooney WP 3rd, Chao EY. In-vivo function of the thumb muscles. Clin Biomech (Bristol, Avon) 14(2):141-50; 1999.
    51.Koff MF, Ugwonali OF, Strauch RJ, Rosenwasser MP, Ateshian GA, Mow VC. Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis. J Hand Surg Am. 28(4):597-604; 2003.
    52.Koff MF, Ugwonali OF, Strauch RJ, Roserwasser MP, Ateshian GA, Mow VC. Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis. The Journal of Hand Surgery 28A(4):597-604; 2003.
    53.Kursa K, Diao E, Lattanaza L, Rempel D. In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. J Biomech. 38(11):2288-93; 2005.
    54.Keenan KG, Massey WV. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces. PLoS One 7(10):e48193; 2012.
    55.Long C II, Conrad PW, Hall EA, Furler SL. Intrinsic-extrinsic muscle control of the hand in power grip and precision handling: an electromyographic study. J Bone Joint Surg Am 52(5):853-867; 1970.
    56.Lay BS, Sparrow WA, Hughes KM, O'Dwyer NJ. Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Hum Mov Sci 21(5-6):807-30; 2002.
    57.Levangie PK, Norkin CC. Joint structure and function-a comprehensive analysis. 4th ed. Philadelpha: F.A. David: 2005.
    58.Li ZM, Tang J, Chakan M, Kaz R. Complex, multidimensional thumb movements generated by individual extrinsic muscles. J Orthop Res. 26(9):1289-95; 2008.
    59.Li K, Nataraj R, Marquardt TL, Li ZM. Directional coordination of thumb and finger forces during precision pinch. PLoS ONE 8(11): e79400, 2013
    60.Mallik AK, Ferrell WR, McDonald AG, Sturrock RD: Impaired propriceptive acuity at the proximal interphalangeal joint in patients with the hypermobility syndrome. Br J Rheumatol. 33(7):631-7; 1994.
    61.Maier MA, Hepp-Reymond MC. EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force. Exp Brain Res 103(1):108-22; 1995.
    62.Moulton MJ, Parentis MA, Kelly MJ, et al. Influence of metacarpophalangeal joint position on basal joint-loading in the thumb. J Bone Joint Surg [Am]. 83-A(5):709-16; 2001
    63.Maitland GD, Hengeveld E, Banks K, English K. Maitland's vertebral manipulation. 6th ed. Oxford: Butterworth-Heinemann. p1-15. 2001..
    64.Milner TE, Dhaliwal SS. Activation of intrinsic and extrinsic finger muscles in relation to the fingertip force vector. Experimental Brain Research 146(2):197-204; 2002.
    65.McMahon M, Stiller K, Trott P. The prevalence of thumb problems in Australian physiotherapists is high: an observational study. Aust J Physiother. 52(4):287-92; 2006.
    66.Napier JR. The form and function of the carpometacarpal joint of the thumb. J Anat 89:362; 1955
    67.Nordin M, Frankel V. Basic biomechanics of the musculoskeletal system. Philadelphia, USA: Lea & Febiger; 1989
    68.Neumann DA, Bielefeld T. The cmc joint of the thumb: stability, deformity, and therapeutic intervention. J Orthop Sports Phys Ther 33:386–399; 2003.
    69.Pellegrini VD Jr. Osteoarthritis of the trapeziometacarpal joint: the pathophysiology of articular cartilage degeneration. I. Anatomy and pathology of the aging joint. J Hand Surg Am. 16(6):967-74; 1991.
    70.Pellegrini VD Jr. Osteoarthritis at the base of the thumb. Orthop Clin North Am. 23(1):83-102; 1992.
    71.Perotto AO. Anatomical guide for the electromyography: The limbs and trunk. 3rd ed. USA: Charles C. Thomas. p. 6-72; 1994.
    72. Seireg A, Arvikar RJ. A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech. 6(3):313-26; 1973.
    73.Smutz WP, Kongsayreepong A, Hughes RE, Niebur G, Cooney WP, An KN. Mechanical advantage of the thumb muscles. J Biomech 31(6):565-70; 1998.
    74.Smaby N. Johanson ME, Baker B, Kenny DE, Murray WM, Hentz VR. Identification of key pinch forces required to complete functional tasks. Journal of Rehabilitation Research and Development 41:215-24; 2004
    75.Sonne-Holm S, Jacobsen S. Osteoarthritis of the first carpometacarpal joint: a study of radiology and clinical epidermiology. Results from the Copenhagen Osteoarthritis Study. Osteoarthritis Cartilage 14: 496-500; 2006.
    76.Tsiouri C, Hayton MJ, Baratz M. Injury to the ulnar collateral ligament of the thumb. Hand. 4:12-18; 2009.
    77.Valero-Cuevas FJ, Zajac FE, Burgar CG. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics 31,693-703;1998
    78.Vigouroux L, Quaine F, Labarre-Vila A, Amarantini D, Moutet F.Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. J Biomech. 40(13):2846-56;2007.
    79.West DJ, Gardner D. Occupational injuries of physiotherapists in North and Central Queensland. Aust J Physiother. 47(3):179-86;2001
    80.Wajon A, Ada L. Prevalence of thumb pain in physical therapists practicing spinal manipulative therapy. J Hand Ther. 16(3):237-44;2003
    81.Wu, G., van der Helm, F.C., Veeger, H.E., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech. 38(5):981–92;2005.
    82.Wajon A, Ada L, Refshauge K. Work-related thumb pain in physiotherapists is associated with thumb alignment during performance of PA pressures. Manual Therapy 12:12-16;2007.
    83.Wu JZ, Sinsel EW, Shroyer JF, Warren CM, Welcome DE, Zhao KD, An KN, Buczek FL. Analysis of the musculoskeletal loading of the thumb during pipetting--a pilot study. J Biomech. 22;47(2):392-9, 2014.
    84.Wolf JM, Cameron KL, Owens BD. Impact of joint laxity and hypermobility on musculoskeletal system. J Am Acad Orthop Surg. 19(8):463-71, 2011
    85.Zancolli EA. The trapeziometacarpal joint. Tenotomy of the accessory tendons in early osteoarthritis. Hand Clin. 17(1):13-43;2001.

    下載圖示
    2022-08-01公開
    QR CODE