| 研究生: |
戴誥芬 Tai, Kao-Fen |
|---|---|
| 論文名稱: |
都市土地使用與二氧化碳濃度影響之關聯研究 The research on the interaction between urban land use and carbon dioxide concentration |
| 指導教授: |
張學聖
Chang, Hsueh-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 二氧化碳 、都市空間規劃 、都市活動 、土地使用類型 、空間自相關 、群落分析 、綠色運輸 |
| 外文關鍵詞: | carbon dioxide (CO2), urban spatial planning, urban activities, land use type, spatial autocorrelation analysis(SAA), cluster analysis, green transportation |
| 相關次數: | 點閱:139 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溫室氣體自工業革命以來大量成長,其中又以二氧化碳影響最大,造成溫室效應現象、生態系統改變、生物多樣性驟減、氣候變遷異常等問題,對於全球氣候負面影響多面且巨大,而從國際相關條約亦可得知二氧化碳排放減量之急迫性。目前國際間針對二氧化碳排放與減量措施多僅侷限在能源政策及產業結構部門,殊少從都市空間規劃之角度切入,探討土地使用配置與都市活動對於二氧化碳濃度之影響,因此本研究嘗試透過實地量測嘉義市二氧化碳濃度值,並利用空間自相關分析與群落分析法進行都市土地使用與二氧化碳濃度關係之探討。並針對土地使用類型、強度與碳濃度關係建立假說,加以驗證都市土地使用內容、強度與碳濃度之間具有關聯性;土地使用誘發旅次需求,產生運輸活動使得土地使用的發展得以連繫並延續,且在過程中直接排放了二氧化碳,對於碳排放影響是立即且較為顯著的,故本研究最後選取與土地使用密切相關的運輸部門,進行綠色運輸政策情境模擬,以檢視在政策之執行下對於空間減碳效益之短期成效。最後得出主要結論有:
1.二氧化碳於都市空間中具有空間聚集性,且在市中心與外圍農業使用地區因活動同質性高,呈現高度相關現象。
2.市中心因人口與活動的密集,其單位面積排放量較高,呈現聚集之現象,與平均碳濃度對照亦可證明其碳濃度較高之情形;市中心外圍則因活動強度不如市中心般強且密集,故碳濃度下降;在嘉義市最外圍的地區,多為農地使用,有部分居住、產業活動散佈其中,導致其產業活動單位面積排放量仍佔有一定比例,但因其大範圍的開放空間使得其碳濃度仍為最低。
3.經假說驗證結果顯示土地使用強度愈高其碳濃度愈高,以及土地使用類型確實對於碳濃度有所影響,而移動性排放源交通碳排對於碳濃度之影響亦有某種程度的關聯性。惟因影響碳濃度之因素並非單一的,而是多元且複雜的,特別是空間區位因素,故碳濃度與土地使用類型或發展強度的關係雖為絕對關係,但納入空間區位特性後即轉變為相對關係。
4.綠色運輸政策實施模擬結果顯示,在政策實施後確實對於碳排放具有減緩效益,但對於碳濃度較高之市中心地區則成效較不明顯,故政策執行重點建議可以針對重點地區(碳濃度較高之地區)進行規劃,以舒緩當地碳濃度帶來之負面影響。
本研究乃為土地使用與碳濃度關聯性的初探研究,自永續都市發展之觀點出發,探討都市環境碳減量之重要性,並進行土地使用與碳濃度之關聯性研究,最後驗證二者確實具有關聯性,都市土地使用所引發的各類活動,對於能源消耗與碳排放量會有所影響。又都市活動中的運輸活動乃因不同土地使用與活動所誘發產生之需求,而運輸活動的進行係以直接碳排放為主,對於碳濃度之聚集具有影響性。本研究藉由綠色運輸政策之模擬,亦驗證了都市土地使用與交通運輸政策的結合,有助於二氧化碳減量工作的進行。本研究之結果可供未來土地使用規劃進行時作為參考,考量土地使用與交通運輸二者間之關係,藉由二者之適當結合,則可達到私人機動運具轉移至綠色運具使用、減少旅次需求、降低旅次長度之目標,進而減少能源消耗量,達到二氧化碳減量之目的。
Greenhouse gases have been increasing massively since the Industrial Revolution, especially carbon dioxide(CO2), which cause many environmental issues such as greenhouse effect phenomenon, ecosystem change, biological diversity reduction, climate change. Such negative effects on global climate are huge and multi-faceted, and we can learn from the international treaties about the urgency of CO2 emission reductions. At present the international community takes measures for the volume of CO2 emissions and reduction which is limited to the energy policy and industrial sectors. Besides, few people will do the research and discuss from the point of urban spatial planning to analyze the impact of the land-use configuration and urban activities on CO2 concentration. Thus, the research attempted to find out the relationship between urban activities and CO2 concentration through field measurements, spatial autocorrelation analysis and cluster analysis, contrasted to land use types in Chiayi City. The research also establishes the hypotheses which is to verify if there’s correlation between urban land use types, intensity and the concentration of CO2. The final section is scenario simulation which is to examine the carbon reduction effectiveness under the green transportation strategies. Finally we got the conclusion as listed below:
1.Through spatial autocorrelation analysis, the result yields that the CO2 concentration has the trait of spatial clustering in urban space. The concentration of CO2 in the downtown of Chiayi City has a relatively strong positive correlation of spatial features, which might results from the similar land use types or dense urban activities.
2.CO2 is concentrated in the center of the city because of the high intensity of human and activities, and it’s relatively less intensive of urban activities in the periphery of the city which leads to lower CO2 emission. In the outlying areas of the city, there’s a large area of agricultural land and woodlands which contributes to the effect of CO2 absorption obviously. Even though there are some human activities among there, it still shows the lowest concentration of CO2.
3.Through the hypothesis verification which shows that the higher intensity of activities leads to higher concentration of CO2, and the land use type does affect it as well. Besides, the mobile emission source like vehicles also has a direct effect on CO2 concentration. However, the factors which affect the concentration of carbon are multiple and complex, especially the spatial location. So taking those factors into consideration, the relation between CO2 concentration and the land-use types or the intensity of development will become uncertain.
4.The scenario simulation of Green Transportation Strategies shows that the implementation of those strategies is indeed effective for carbon reduction, but the effectiveness in the center area of city which has higher concentration of CO2 is less obvious. So one recommendation of decreasing the negative effect of CO2 concentration from this research is to implement this policy to the area which with higher concentration of carbon.
The goal of the research is to find out the interaction between urban land use and CO2 concentration. Transportation activities are generated from the different land use and activities, which produce carbon emissions directly that might have impact on CO2 concentration. In this study, the simulation of Green Transportation Strategies shows the effectiveness of CO2 reduction by combining transport policy with land use planning. The results of this study could be the reference for the future land use planning. In order to achieve the goal of reduction on energy consumption and CO2 emission, we suggest taking the relationship between land use and transportation into consideration, and creating a mode switching from private motors to green vehicles, which can reduce travel demand and the distance of trip.
壹、英文文獻
1.Anderson, W. P., P. S. Kanaroglou, et al., 1996, "Urban form, energy and the environment: A review of issues, evidence and policy", Urban Studies, 33(1): 7-35.
2.Anselin, L., 1995, “Local Indicators of Spatial Association ‐ LISA”, Geographical Analysis, 27: 115.
3.Baxter, S. J., and Oliver, M. A., 2005, “The spatial prediction of soil mineral N and potentially available N using elevation”, Geoderma, 128: 325-339.
4.Breheny, M., 1995, "The Compact City and Transport energy-consumption", Transactions of the Institute of British Geographers, 20(1): 81-101.
5.Chafe, Z., 2007, “Reducing Natural Disaster Risk in Cities”, London, Earthscan.
6.Chaudhari, P. R., Gajghate, D. G., Dhadse, S., Suple, S., Satapathy, D. R. and Wate, S. R., 2007, “Monitoring of environmental parameters for CO2 sequestration: a case study of Nagpur City, India”, Environ Monit Assess, 135: 281–290.
7.Goovaerts, P., 2000, “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall”, Journal of Hydrology, 228: 113-129.
8.Grimmond, C. S. B., King, T. S., Gropley, F. P., Nowak, D. J. and Souch, C., 2002, “Local scale fluxes of carbon dioxide in urban environments: Methodological challenge and results from Chikago”, Environmental Pollution, 116: S243–S254.
9.Grubler, A., 1994, “Changes in Land Use and Land Cover: A Global Perspective”, Cambridge University Press, Cambridge.
10.Hopkins, A. S., H. J. Schellnhuber and V. L. Pomaz, 2004, “Urbanised territories as a specific component of the Global Carbon Cycle”, Ecological Modelling, 173: 295–312.
11.Houghton, R.A., 2007, “Balancing the Global Carbon Budget”, Annual Review of Earth and Planetary Sciences, 35: 313-347
12.Idso, C. D., Idso, S. B. and Balling, R. C., 1998, “The urban CO2 dome of Phoenix, Arizona”, Physical Geography, 19: 95–108.
13.Idso, C. D., Idso, S. B. and Balling, R. C., 2001, “An intensive two-week study of an urban CO2 dome”, Atmospheric Environment, 35: 995–1000.
14.Idso, S. B., Idso, C. D. and Balling, R. C., 2002, “Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA”, Atmospheric Environment, 36: 1655–1660.
15.Imhoff, M. L., Bounoua, L., DeFries, R., Lawrence, W. T., Stutzer, D., Tucker, C. J. and Ricketts, T., 2004, “The consequences of urban land transformation on net primary productivity in the United States”, Remote Sensing of Environment, 89: 434–443.
16.IPCC, 2007, “IPCC Fourth Assessment Report” Switzerland, Intergovernmental Panel on Climate Change, IPCC.
17.Jon Lang, 1994, “Urban Design—The American Experience”, Van Nostrand Reinhold.
18.Josef Leitmann, 2002, “Environmental Planning and Management in Urban Design”, 美商麥格羅希爾
19.Koerner, B. and Klopalok, J., 2002, “Anthropogenic and natural CO2 emission sources in an arid urban environment”, Environmental Pollution, 116: S45–S51.
20.Mokhtarian, P. L., M. N. Bagley, et al., 1998, "The impact of gender, occupation, and presence of children on telecommuting motivations and constraints", Journal of the American Society for Information Science, 49(12): 1115-1134.
21.Nasrallah, H. A., Balling, R. C., Madi, S. M., Al-Ansari, L., 2003, “Temporal variations in atmospheric CO2 concentrations in Kuwait City, Kuwait with comparisons to Phoenix, Arizona, USA”, Environmental Pollution, 121: 301–305.
22.Newman, P. W. G. and J. R. Kenworthy, 1989, " Gasoline Consumption and Cities - A Comparison of United-States Cities with A Global Survey ", Journal of the American Planning Association, 55(1): 24-37.
23.Oke, T. R., 1984, “Methods in urban climatology”, In: Kirchofer, W., Ohmura, A., Wanner, W. (Eds.), Applied climatology. Zurcher Schriften 14, ETH, Zurich, 19–29.
24.Pimentel, D., Hurd, L. E. and Bellotti, A. C., 1973, “Food production and energetic crisis”, Science, 182: 443–449.
25.Schimel, D. S., Braswell, B. H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R., 1994. “A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management”, Geochemical Cycles, 8 (3): 279-293.
26.Schlesinger, W. H., Andrews, J. A., 2000, “Soil respiration and the global carbon cycle”, Biogeochemistry, 48: 7-20.
27.Trumbore, S. E., Chadwick, O. A., Amundson, R., 1996, “Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change” Science, 272: 393-396.
28.Van der Waals, J. F. M., 2000, "The compact city and the environment: A review", Tijdschrift Voor Economische En Sociale Geografie, 91(2): 111-121.
29.Velasco, E., Pressley, S., Allwine, E., Westberg, H. and Lamb, B., 2005, “Measurements of CO2 fluxes from the Mexico City urban landscape”, Atmospheric Environment, 39: 7433–7446.
30.Wackernagel M. and Rees W. E., 1996, “Our Ecological Footprints: Reducing Human Impact on the Earth.”, New Society Publisher, Cabriola Island, B.C., Canada.
31.Zha, T. S., K. Y. Wang, et al., 2002, "Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature", Tree Physiology, 22(17): 1241-1248.
貳、中文文獻
1.王安民,1999,因應全球CO2 減量背景下之永續都市規劃策略研究─以台北市為例,國立中興大學都市計劃研究所碩士論文。
2.王珮琪,2005,以二氧化碳減量觀點探討都市計畫綠化管制策略,國立臺北科技大學建築與都市設計研究所碩士論文。
3.王國權,2005,台北都會區都市發展對都市能源消耗影響之研究,國立台北大學都市計劃研究所碩士論文。
4.台北市交通局,2004,93年臺北市交通民意調查報告。
5.交通部運輸研究所,1990,嘉義都會區大眾捷運系統可行性研究。
6.交通部運輸研究所,2002,永續運輸之量化指標研究
7.交通部運輸研究所,2004,永續的道路規劃與設計規範之研究。
8.交通部運輸研究所,2006,運輸部門節約能源及溫室氣體減量潛力評估與因應策略規劃。
9.交通部運輸研究所,2009,綠色運輸系統與土地使用規劃整合之研究(之二)訂定綠色運輸系統規劃準則暨操作手冊。
10.行政院經濟建設委員會,2007,人本交通運輸系統規劃及示範案例。
11.岡田光正,建築と都市の品現工学―空間と行動のしくみ。
12.沈清基,2000,城市生態與城市環境,上海同濟大學。
13.李永展、李欽漢譯,Wackernagel&Rees著,2000,生態足跡─減低人類對地球的衝擊,創興出版社。
14.呂佳玲,2007,都市中通勤型腳踏車道設置之研究,台灣大學土木工程學研究所碩士論文。
15.林孟儒,2002,因應全球二氧化碳減量生態趨勢之都市綠化政策研究-以台北市為例,國立台北科技大學建築與都市設計研究所碩士論文。
16.能源平衡表,2009。
17.郝道猛,1997,生態學概論,徐式基金會。
18.張仁福,1999,環境生態學,復文書局。
19.張秀玲,2001,整合空間統計技術之土地大量估價方法之研究,國立成功大學都市計劃研究所碩士論文。
20.黃運貴,2005,運輸部門能源消費量及節能措施之研究,國立台灣大學土木工程學研究所博士論文。
21.黃群達,2006,住宅與商業部門能源消費及二氧化碳排放特性與趨勢變動分析,國立成功大學環境工程研究所碩士論文。
22.陳弘毅,2004,都市綠地系統規劃與二氧化碳減量關係之研究─以萬華車站特定區為例,國立臺北科技大學建築與都市設計研究所碩士論文。
23.陳俊德,2008,以空間分析模式劃設海洋、海岸保護區之研究─以高美濕地為例,國立中山大學海洋環境及工程學系研究所碩士論文。
24.曾思毓,2008,鄰里建成環境對家戶能源消費碳足跡之影響,長榮大學土地管理與開發研究所碩士論文。
25.楊開忠、楊詠、陳潔,2000,生態足跡分析理論與方法,地球科學進展,第15卷,第6期,頁630-636。
26.楊志文,2007,應用整合性選擇模式探討新運具的選擇行為,運輸計劃季刊,第36卷,第2期,頁183-208。
27.嘉義市政府,2005,嘉義市及週邊地區整體運輸規劃。
28.嘉義市政府,2005,辦理市區公車路線與高鐵聯外道路接駁車路線規劃案。
29.羅昌南,2001,台北都會區機車使用趨勢分析之研究。
30.鼎漢國際工程顧問公司,2004,嘉義市設置客運交通轉運中心可行性研究與先期規劃:先期規劃。
31.經濟部能源局,2009,我國燃料燃燒CO2排放統計與分析。