簡易檢索 / 詳目顯示

研究生: 黃于唐
Huang, Yu-Tang
論文名稱: 硫氰酸亞銅薄膜製備及電鍍液比例及電荷密度優化及CuSCN/ZnO奈米結構自供電光感測器應用
The study of the Properties of Electro-Deposited CuSCN Thin Films with Different Electrolyte Ratio and Charge Density for CuSCN/ZnO Self-Powered Photodetector Applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 硫氰酸亞銅薄膜硫氰酸亞銅晶相變化奈米花表面能自供電紫外光感測器元件
外文關鍵詞: CuSCN thin film, electrolyte ratio, charge density, nano flower, self-powered photodetector, mobility, mechanism of nano structure change
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以1:1到3:1KSCN與CuSO4比例製備電鍍液應用於光感測器上,利用CuSCN 與ZnO之間PN.接面的特性達元件效率優化。由於利用蕭特基接觸製作的氧化鋅光感測器,需要外加電場才會有效率並且高電場造成的周圍擾動,致使上升時間與下降時間過長;此外,CuSCN作為光感測器P型材料研究較少,穩定性佳,且其能隙位於3.6-3.9eV能使紫外光有效吸收於氧化鋅。本研究以霍爾量測、XRD、SEM及UPS來探討其材料機制,採取以不同比例KSCN與CuSO4製備, 發現晶相漸漸由I(003)轉向I(101)並由β-CuSCN轉為α-CuSCN。且在霍爾量測中發現在比例2:1的情況下,載子移動率最高。對於電子電洞分離速度有很顯著的效果,大大的提升了氧化鋅光感測器的反應速度。最後利用UPS與UV-Vis測量其能帶圖,可以發現電鍍液比例改變能夠將HOMO值由原本的5.1調整至接近ITO能階的4.77。
    而在電鍍厚度部分,發現隨著厚度增加,晶相由I(003)轉向I(101),其粗糙度也隨著I(101)晶相的增加而上升。經過霍爾量測我們可以發現隨著厚度的增加,其載子濃度也會提升,在載子移動率部分,當CuSCN膜的厚度達800nm時最高。而由UPS與UV-Vis的量測,可以發現其HOMO值會先下降,直至800nm達到最低的4.77。再增加厚度,HOMO值慢慢提升至5.35。會有這種現象主要是因為銅空缺多寡,由XPS量測可以發現當厚度在800nm時,Cu與SCN比例為0.677,相較200nm時Cu:SCN比例0.9,銅空缺量明顯變多了。然而當厚度到達1400nm時,Cu:SCN比例0.769銅空缺量減少,HOMO值也隨之上升。
    於元件端本研究目的是藉由電鍍不同比例電鍍液CuSCN來提升元件效率,而最終元件上升時間與下降時間可從12s/18s優化至6s/12s,有效地降低了6秒的反應時間,在響應度部分,可由原本6mA/W提升至27.3mA/W了4.55倍。代表本實驗改變電鍍液比例能夠明顯提升元件表現,其原因是由於在電鍍液比例2:1時,其載子飄移率最高,有效的降低了響應時間,並且其Cu離子會參與水熱法反應,使氧化鋅形貌從原本的奈米柱變成奈米花,大幅的增加吸光面積,並在HOMO部分也由原本的5.1eV下降至4.77eV大大的降低了其與ITO之間的能障,達元件最佳化結果。

    In this study, we use different electrolyte ratio and charge density to optimize the thin film of CuSCN. When we change electrolyte ratio, we found that the polymorphic form of the CuSCN change from β-CuSCN to α-CuSCN when we increase the ratio of SCN in the electrolyte.And we get the highest mobility and lowest carrier concentration when the electrolyte Cu: SCN 1:2. We also found that because of the Cu vacancy, valance band of the CuSCN which the electrolyte Cu: SCN=1:2 is 4.77eV near ITO. The energy barrier between ITO and CuSCN decrease, it is helpful for the application for the ITO/CSCN base device. Then, we discuss the influence of the charge density to CuSCN thin film characteristic. We observe that the carrier concentration become higher when we increase the charge density. And we also get the highest mobility when the charge concentration set to 120mC/cm2.Finally, we combine the result above and produce a self-powered photodetector. In this research, we found that when the electrolyte ratio Cu: SCN= 1:2, the responsivity of the device is the highest.It is becauce of the nano structure of ZnO turn from nanorod to nanoflower. We also observe that the fastest response time of the photodetector appears when electrolyte ratio Cu:SCN=1:2.

    第一章 緒論 1 1-1 前言 1 1-2 氧化鋅紫外光感測器簡介 2 1-3 論文架構 4 第二章 理論介紹與文獻回顧 5 2-1 光檢測器 5 2-2 硫氰酸亞銅簡介 7 2-3 氧化鋅材料簡介 8 2-4 水熱法 9 2-4-1 水熱法簡介 9 2-4-2 水熱法成長氧化鋅歷史回顧 10 2-5 電鍍法 14 2-5-1 電鍍法簡介 14 2-5-2 電鍍硫氰酸亞銅之演進 15 2-6 氧化鋅光感測器之演進 19 2-7 CuSCN載子移動率改進文獻回顧 22 第三章 實驗步驟與儀器原理 27 3-1 前言 27 3-2 實驗用材料 28 3-3 實驗步驟-氧化鋅紫外光感測元件製備 30 3-3-1 ITO基板前處理步驟 30 3-3-2 電鍍CuSCN與流程 31 3-3-3 氧化鋅奈米結構合成與成膜製程 35 3-3-4 金屬電極之蒸鍍製程 37 3-4 量測系統及特性分析 38 3-4-1 量測儀器設備 38 3-4-2 特性分析 39 第四章 實驗數據與結果討論 46 4-1 CuSCN經電鍍液比例改變特性分析與機制探討 46 4-1-1 CuSCN經電鍍液比例改變XRD分析 46 4-1-2 CuSCN經電鍍液比例改變XPS分析 48 4-1-3 CuSCN經電鍍液比例改變霍爾量測分析 49 4-1-4 CuSCN經電鍍液比例改變能帶圖分析 50 4-1-5 CuSCN經電鍍液比例改變之AFM分析 52 4-1-6 CuSCN經電鍍液比例改變之薄膜接觸角分析 53 4-2 CuSCN電鍍電荷密度改變特性分析與機制探討 56 4-2-1 CuSCN電荷密度改變XRD分析 56 4-2-2 CuSCN電荷密度改變XPS分析 57 4-2-3 CuSCN電荷密度改變霍爾量測分析 59 4-2-4 CuSCN電荷密度改變對於能帶圖影響 60 4-2-5 CuSCN厚度改變對於AFM之分析 62 4-2-6 電荷密度改變對於表面能之分析 63 4-3 氧化鋅紫外光感測器元件機制探討 65 4-3-1 CuSCN結合氧化鋅之光感測器元件IV曲線圖分析 65 4-3-2 不同電鍍液比例電鍍CuSCN之元件It圖分析 66 4-3-3 不同電鍍液比例對光感測器響應度影響 69 4-3-4 不同電鍍液比例對於氧化鋅結構改變機制 71 4-3-5 P-N氧化鋅光感測器效率比較 74 第五章 結論與未來展望 76 5-1 結論 76 5-2 未來展望 80 第六章 參考文獻 81

    [1] D. Y. Guo, C. X. Shan, S. N. Qu, and D. Z. Shen. "Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films." Scientific Reports, Vol.4, p.7469, 2014
    [2] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and, and D. Wang. "ZnO nanowire UV photodetectors with high internal gain." Nano Letters, Vol.7 , p.1003-1009, 2007
    [3] Y. Jin, J. Wang, B. Sun, C. Blakesley, and N. Greenham. "Solution-processed 52 ultraviolet photodetectors based on colloidal ZnO nanoparticles." Nano Letters, Vol.8 ,p.1649-1653, 2008
    [4] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay. "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires." Applied Physics Letters, Vol.94 , 2009
    [5]J. I. Pankove, “perspective on gallium nitride,” Proc. Mater. Mater Res. Soc., vol. 162, p. 515-519, 1990
    [6] M. Law , L. E. Greene , J. C. Johnson , R. Saykally ,P. D. Yang, “Nanowire dye-sensitized solar cells”Nat. Mater. , Vol.4 , 449,2005
    [7]H. D. Cho , A. S. Zakirov , S. U. Yuldashev , C. W. Ahn , Y. K. Yeo , T. W. Kang , “Photovoltaic device on a single ZnO nanowire p-n homojunction”,Nanotechnology , Vol.23, No. 11,2012
    [8]G. Adamopoulos , A. Bashir , P. H. Wobkenberg , D. D. C. Bradley , T. D. Anthopoulos , “Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air”,Appl. Phys. Lett. ,Vol.95, 2009
    [9]P. Pattanasattayavong, N. Yaacobi-Gross, K. Zhao, G. O. N. Ndjawa, J.
    Li, F. Yan, B. O’Regan, A. Amassian, and T. Anthopoulos,” Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature”, Adv. Mater,
    Vol.25, p.1504 , 2013
    [10]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang,” CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%”,Nano Lett. ,Vol. 15, p. 3723 ,2015
    [11]蔡宗哲(2014)。以水熱法製備氧化鋅類單晶薄膜及其異質結構於紫外光檢測器之研製。國立成功大學微電子工程研究所碩士論文,台南市。取自https://hdl.handle.net/11296/v2x3mt
    [12] Pattanasattayavong, P., Packwood, D., & Harding, D. J. “Structural versatility and electronic structures of copper(i) thiocyanate (CuSCN)–ligand complexes” Journal of Materials Chemistry C. ,Vol. 41,2019
    [13] Park, W. I., Kim, D. H., Jung, S.-W., & Yi, G.-C. “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Applied Physics Letters, Vol.80, p.4232, 2002
    [14] Ghahramanifard, F., Rouhollahi, A., & Fazlolahzadeh, O.” Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure” Superlattices and Microstructures, Vol. 114, p1-14, 2018
    [15] Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., & Segawa, Y.” Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films” Applied Physics Letters,Vol 72, p 3270-3272,1998
    [16] Ohta, H., Orita, M., Hirano, M., & Hosono, H.” Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO” Journal of Applied Physics,Vol 89,p 5720-5725,2001
    [17] Li, Q. H., Liang, Y. X., Wan, Q., & Wang, T. H.” Oxygen sensing characteristics of individual ZnO nanowire transistors” Applied Physics Letters,Vol.85,pp 6389-6391,2004
    [18] Dai, W., Pan, X., Chen, S., Chen, C., Chen, W., Zhang, H., & Ye, Z.” ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods” RSC Advances,Vol 5 ,p 6311-6314, 2015
    [19] Haixia Li, Wanqiu Zhao, Yang Liu, Yi Liang, Liang Ma, Meng Zhu, Chujun
    Yi, Lun Xiong, Yihua Gao “High-level-Fe-doped P-type ZnO nanowire array/n-GaN film for ultraviolet-free white light-emitting diodes" Materials Letters, Vol 239, p 45-47, 2019
    [20] Nomoto, J., Makino, H., Tsuchiya, T., & Yamamoto, T.” Chemical trends of n-type doping of Al, Ga, In, and Ti donors for ZnO polycrystalline films deposited by direct-current magnetron sputtering” Journal of Applied Physics,vol.128,2020
    [21] Liu, J. L., Xiu, F. X., Mandalapu, L. J., & Yang, Z” P-type ZnO by Sb doping for PN-junction photodetectors” Materials and Devices,2006
    [22] Wagner, R. S., & Ellis, W. C. “VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH” Applied Physics Letters,Vol.4,p 89-90, 1964
    [23] Wu, Y., & Yang, P.” Direct Observation of Vapor−Liquid−Solid Nanowire Growth” Journal of the American Chemical Society,Vol 123, p.3165-3166,2001
    [24] Spanhel, L., & Anderson, M. A. “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids.” Journal of the American Chemical Society,Vol. 113,p 2826-2833,1991
    [25] Vayssieres, L., Keis, K., Lindquist, S.-E., & Hagfeldt, A.” Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO.” The Journal of Physical Chemistry B, Vol. 105, p.3350-3352,2001
    [26] Vayssieres, L., Beermann, N., Lindquist, S.-E., & Hagfeldt, A.” Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays:  Application to Iron(III) Oxides” Chemistry of Materials,Vol.13,2001
    [27] Vayssieres, L.” Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions.” Advanced Materials, Vol. 15,p. 464-466,2003
    [28] Fang, Y., Wen, X., Yang, S., Pang, Q., Ding, L., Wang, J., & Ge, W.” Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates” Journal of Sol-Gel Science and Technology,Vol.36, p. 227–234, 2005
    [29] Feng, Z., Rafique, S., Cai, Y., Han, L., Huang, M.-C., & Zhao, H.” ZnO Nanowall Networks for Sensor Devices: From Hydrothermal Synthesis to Device Demonstration” ECS Journal of Solid State Science and Technology,Vol.7,2018
    [30] Wei, H., Wu, Y., wu, L., & Hu, C. “Preparation and photoluminescence of surface N-doped ZnO nanocrystal” Materials Letters, Vol. 59,p.271-275,2005
    [31] Piticescu, R. R., Piticescu, R. M., & Monty, C. J.” Synthesis of Al-doped ZnO nanomaterials with controlled luminescence” Journal of the European Ceramic Society,Vol.26,p. 2979-2983,2006
    [32] M. Fang, C. M. Tang & Z. W. Liu” Microwave-Assisted Hydrothermal Synthesis of Cu-Doped ZnO Single Crystal Nanoparticles with Modified Photoluminescence and Confirmed Ferromagnetism” Journal of Electronic Materials ,Vol.47, p. 1390–1396,2018
    [33] Horia Chiriac ,A.E. Moga, Carmen Gherasim, Nicoleta Lupu” Synthesis and Characterization of Fe-W and Ni-W Composite Coatings” Romanian Journal of Information Science and Technology, Vol.11, No.2, 123-132, 2008
    [34] Bilewicz, R., & Kublik, Z” Adsorption—Nucleation and growth mechanism of CuSCN monolayer formation on a copper amalgam electrode in thiocyanate solutions” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol.195, p.137-149,1985
    [35] Rost, C., Sieber, I., Siebentritt, S., Lux-Steiner, M. C., & Könenkamp, R.” Spatially distributed p-n heterojunction based on nanoporous TiO2 and CuSCN” Applied Physics Letters, Vol. 75, p. 692-694,1999
    [36] Wu, W., Jin, Z., Hua, Z., Fu, Y., & Qiu, J.” Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution” Electrochimica Acta, Vol.50, p. 2343–2349, 2005
    [37] Ni, Y., Jin, Z., Yu, K., Fu, Y., Liu, T., & Wang, T.” Electrochemical deposition characteristics of p-CuSCN on n-ZnO rod arrays films.” Electrochimica Acta, Vol. 53, p.6048-6054, 2008
    [38] Pinto Guedes, J.M. ; Gustafson, T.K. ; Slayman, C.W.” HIGH-SPEED PHOTODETECTION WITH SMALL AREA METAL-ZnO-METAL THIN-FILM SANDWICHES”, SPIE, Vol. 236, p.446-450, 1981
    [39] Hatch, S. M., Briscoe, J., & Dunn, S.” A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response”, Advanced Materials, Vol. 25, No. 6, p. 867-871, 2012
    [40] Liu, J. L., Xiu, F. X., Mandalapu, L. J., & Yang, Z.” P-type ZnO by Sb doping for PN-junction photodetectors.” Zinc Oxide Materials and Devices, 2006
    [41] Zhu, H., Shan, C. X., Yao, B., Li, B. H., Zhang, J. Y., Zhao, D. X., … Fan, X. W.” High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction.” ,The Journal of Physical Chemistry C, Vol.112, p. 20546–20548,2008
    [42] H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan” Development of Solution-Processed ZnO Nanorod Arrays Based Photodetectors and the Improvement of UV Photoresponse via AZO Seed Layers” ACS Applied Materials & Interfaces, Vol. 8, p. 22647–22657, 2016
    [43] Turkdogan, S., & Kilic, B.” Synthesis and characterization of metal oxide semiconductors by a facile co-electroplating-annealing method and formation of ZnO/CuO pn heterojunctions with rectifying behavior” Materials Research Express, Vol.5, 2018
    [44] Zhi Yang, Minqiang Wang, Jijun Ding, Zhongwang Sun, Le Li, Jin Huang, Jing Liu, and Jinyou Shao” Semi-Transparent ZnO-CuI/CuSCN Photodiode Detector with Narrow-Band UV Photoresponse.” ACS Applied Materials & Interfaces, Vol. 7, No. 38, p. 21235–21244, 2015
    [45] Jinhyun Kim, Younghyun Lee, Bumjin Gil, Alan Jiwan Yun, Jaewon Kim, Hyungsub Woo, Kimin Park, and Byungwoo Park” Cu2O-CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for the Enhanced Carrier Transport and Suppressed Interfacial Degradation.” ACS Applied Energy Materials, Vol.3, No.8, p. 7572-7579,2020
    [46] Pimpisut Worakajit, Fumiya Hamada,Debashis Sahu, Pinit Kidkhunthod, Taweesak Sudyoadsuk, Vinich Promarak, David J. Harding, Daniel M. Packwood, Akinori Saeki,Pichaya Pattanasattayavong” Elucidating the Coordination of Diethyl Sulfide Moleculesin Copper(I) Thiocyanate (CuSCN) Thin Films and Improving Hole Transport by Antisolvent Treatment” Advanced Functional Materials, vol.30, No.36,2020
    [47] Guangcan Luo, Ziling Zhang, Jing Jiang, Yang Liu, Wei Li, Jingquan Zhang,Xia Haob and Wenwu Wanga “Enhanced performance of ZnO nanorod array/CuSCN ultraviolet photodetectors with functionalized graphene layers” RSC Advances, Vol.11, No.13, p.7682-7692,2021
    [48] Jianjun Zhou, Pan Liu, Yongqiang Du, Wansheng Zong, Bingbing Zhang, Yingliang Liu, Shengang Xu & Shaokui Cao” Evident Enhancement of Efficiency and Stability in Perovskite Solar Cells with Triphenylamine-Based Macromolecules on the CuSCN Hole-Transporting Layer” Journal of Electronic Materials, Vol. 50, No.7,3962-3971, 2021
    [49] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805
    [50] F. M. Fowkes, “ATTRACTIVE FORCES AT INTERFACE,” Industrial & Engineering Chemistry, vol. 56, pp. 40-52, 1964.
    [51] D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of applied polymer science, vol. 13, no. 8, pp. 1741-1747, 1969.
    [52] Z. Z. You, "Combined AFM, XPS, and contact angle studies on treated indium-tin-oxide films for organic light-emitting devices," Materials Letters, vol. 61, pp. 3809-3814, 2007
    [53] Y. Tsudaa, T. Suzukia, T. Nakamuraa, K. Udaa, R. Yamakadob, S. Okadab, P. Stadlerb and T. Yoshidaa ” Electrochemical Self-Assembly of CuSCN/4-Cyano-4’-(N’-methyl)Stilbazolium Hybrid Thin Films” ECS Transactions, Vol. 97, 2020
    [54] Ezealigo, B. N., Nwanya, A. C., Simo, A., Bucher, R., Osuji, R. U., Maaza, M., … Ezema, F. I.” A study on solution deposited CuSCN thin films: Structural, electrochemical, optical properties” Arabian Journal of Chemistry,2017
    [55] Qiu-Ming Fu,Ding-Chao He, Zhi-ChaoYao,Ji-Liang Peng,Hong-Yang Zhao,Hong Tao, Zhe Chen, Ya-Fang Tu,Yu Tian,Di Zhou, Guang Zheng, Zhi-Bin Ma” Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures.” Materials Letters, Vol. 222, pp. 74-77, 2018
    [56] Huang, S., Yu, N., Wang, T., & Li, J.” Simple fabrication of UV photo-detector based on NiO/ZnO structure grown by hydrothermal process.” Functional Materials Letters, vol.11, No.2,2018
    [57] Tsay, C.-Y., Hsiao, I.-P., Chang, F.-Y., & Hsu, C.-L.” improving the photoelectrical characteristics of self-powered p-GaN film/n-ZnO nanowires heterojunction ultraviolet photodetectors through gallium and indium co-doping.” Materials Science in Semiconductor Processing, vol. 121, 2021

    無法下載圖示 校內:2026-08-25公開
    校外:2026-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE