簡易檢索 / 詳目顯示

研究生: 林其毅
Lin, Chi-Yi
論文名稱: Dihydrobenzoxazine類新穎熱固性高分子之合成與性質探討
Study on Synthesis and Properties of Novel Thermoseting Polymer Dihydrobenzoxazine
指導教授: 王春山
Wang, Chun-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 108
中文關鍵詞: 共乘作用低介電常數熱固性樹脂
外文關鍵詞: synergism, low dielectric constant, benzoxazine, thermosetting resin
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,一種新型態酚醛樹脂名為dihydrobenzoxazine的新穎高分子材料被發展出來,它的單體是將酚、甲醛和一級胺脫水環化而形成。此dihydrobenzoxazine單體可藉由加熱使其開環硬化形成高分子。
    Dihydrobenzoxazine克服了傳統酚醛樹脂、Epoxy的一些缺點,例如傳統樹脂硬化時會產生副產物,且使用強酸為催化劑。而其機械性質和熱性質上具有比傳統酚醛樹脂更好的優點,如高玻璃轉移溫度﹝Tg﹞、高模數、電氣性質、耐燃性質、低吸濕性、硬化時體積變化率幾乎為零等等。其硬化的過程中,加入適量的酚系結構,可以促進硬化速度、降低硬化溫度、同時使開環聚合完全。
    本研究分為兩個部分,第一部分是合成含有Bisphenol A、4,4’-Biphenol、和Dicyclopentadiene﹝DCPD﹞三種結構的Dihydro-
    benzoxazine。4,4’-Biphenol有著三者中最剛硬的結構,預期會有不錯的機械性質與熱性質。由結果發現4,4’-Biphenol有高達206℃的Tg,而Bisphenol A和DCPD的Tg分別為184℃和183℃。DCPD為輕油裂解的廉價副產物,具有疏水性、低極性及剛硬性脂環狀結構,由文獻中已知具有良好的介電性質。實驗結果DCPD型dihydrobenzoxazine的Dk為2.94U比起Bisphenol A﹝3.31U﹞、4,4’-Biphenol﹝3.45U﹞與傳統的酚醛樹脂﹝3.9~4.0﹞確實為最好的電氣性質。
    第二部分是加入酚系的開環促進劑來和Dihydrobenzoxazine共聚,使其硬化溫度降低,增加硬化速度,同時由於Dihydrobenzoxazine本身為含氮的高分子,我們導入含磷的酚系化合物,利用氮磷共乘作用﹝synergism﹞來使Dihydrobenzoxazine達到UL-94的V-0等級難燃。實驗結果發現導入酚系結構後,由DSC比較發現,可使其硬化溫度降低,且加入適當的量有助於交聯密度的提升而致使Tg升高。難燃性質方面,在磷含量達0.6%﹝Bisphenol A、4,4’-Biphenyldiol﹞和0.9%﹝DCPD﹞時可達到UL-94中難燃的V-0等級。
    整體而言,DCPD型在摻入DOPO-1X比例15%時達UL-94難燃V-0級,同時還有不錯的熱性質、吸濕性、電氣性質。

    Recently, novel polymeric materials, dihydrobenzoxazines, were developed as a new type of phenolic resin. Monomers are heterocyclic compounds synthesized by the reaction of the corresponding phenol, primary amines, and formaldehyde, which the polymers are obtained by the ring-opening polymerization of cyclic monomers by thermal cure.
    Dihydrobenzoxazines have overcome many shortcomings associated with traditional phenolic epoxy, and resins such as releasing condensation by- products and using strong acids as catalysts. Physical and mechanical evaluations have revealed that these new materials possess excellent glass transition temperatures (Tg), high moduli, low water absorption, good dielectric, and a small expansion coefficient upon cure. Adding some phenolic resin can increase the curing speed, and decrease the curing tempeture during curing process.
    The first part of this research was to synthesize dihydrobenzoxazines which contained the main structure of Bisphenol A, 4,4’-Biphenol, and Dicyclopentadiene (DCPD). 4,4’-Biphenol had the most rigid structure of the three and expected to possess the best mechanical and thermal properties. We found that the glass transition temperatures(Tg) of 4,4’-Biphenol benzoxazine was 206℃, and that of Bisphenol A and DCPD types were 184℃ and 183℃ respectively. DCPD with a rigid cyclaliphatic structure was a by-product from light oil cracking and had known to possess excellent properties of low moisture-absorption, low dielectric constant, low polarization. The resulted polymer from DCPD benzoxazine had a dielectric constant of 2.94U which was better than that of polymers derived from Bisphenol A (3.31U), 4,4’-Biphenol (3.45) and traditional phenolic resin (3.9~4.0).
    The second part of this research was the copolymerization of dihydrobenzoxazine with phenolic resin in order to decrease the curing tempeture, and increase the curing speed. In our study, the addition of some phenolic compound have increased Tg of cured products. since dihydrobenzoxazine was a nitrogen-containing compound, the copolymerization of dihydrobenzoxazine with phosphorus-containing phenolic compound should improve flame retardancy according to nitrogen-phosphorus synergism. The result indicated that Bisphenol A and 4,4’-Biphenol type benzoxazine with 0.6% phosphorus and DCPD type with 0.9% could achieve flame retardancy UL-94 V-0 rating.

    第一章 緒論................................1 第二章 原理與文獻回顧.....................10 第三章 實 驗..............................27 第四章 單體合成與結構鑑定分析.............39 第五章 結果與討論.........................67 第六章 總結..............................103

    1.PS2來台委外代工之分析~印刷電路板篇,萊寶證卷研發部
    2.化工資訊,1999年10月
    3.郭耀興,印刷電路板用樹脂簡介,塑膠資訊,2000.3(No.40)
    4.化工資訊 9 (9) ,10 (1995)
    5.產業動態報導,彰化銀行
    6.Ning, X.;Ishida, H. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121-1129.
    7.F. W. Holly and A. C. Cope , J. Am. Chem. Soc., 66, 1875 (1944).
    8.E. S. Lane, U.K. Pat. 694,489 (1953).
    9.W. J. Burke, J. Am. Chem. Soc., 71, 609 (1949).
    10.W. J. Burke, E. L. M. Glennie, and C. Weatherbee, J. Org. Chem., 29, 909 (1964).
    11.W. J. Burle, J. L. Bishop, E. L. M. Glenie, and W. N. Bauer, Jr., J. Org. Chem., 30, 3423 (1965).
    12.P. W. Kopf and E. R. Wagner, J. Polym. Sci. Part A: Chem. Ed., 11,939 (1973).
    13.H. Schreiber, German Offen, 2,255,504 (1973).
    14.H. Schreiber, German Offen, 2,323,936 (1973).
    15.G. Riess, J. M. Schwob, G. Guth, M. Roche, and B. Lande, in Advances in Polymer Synthesis, B. M. Culbertson and J. E. McGrath, Eds., Plenum, New Yorl, (1985).
    16.H. P. Higginebottom, U.S. Pat. 4,501,864 (1985).
    17.H. P. Higginebottom, U.S. Pat. 4,557,979 (1985).
    18.JP 特開平 8-208857日立化成工業
    19.JP 特開平 9-59333 日立化成工業
    20.JP 特開平 9-157496 日立化成工業
    21.JP 特開 2000-154225 住友
    22.JP特開2001-106813 住友
    23.JP特開2001-122948 日立化成工業
    24.JP特開2001-220455 三菱瓦斯化學
    25.JP特開2001-240836 日立化成工業
    26.JP特開2001-278934 住友
    27.JP特開2001-310957 Toray
    28.JP特開2002-128987 住友
    29.JP特開2002-145974 日立化成工業
    30.JP特開2002-161188 日立化成工業
    31.JP特開2002-167425 東芝
    32.JP特開2002-226536 日立化成工業
    33.JP特開2003-12894 日立化成工業
    34.JP特開2003-246844 日立化成工業
    35.H. Ishida, Y. Rodriguez, Polymer, Vol. 36, No16, 3151-3158. 1995.
    36.H. Ishida, D. J. Allen, Polymer, Vol. 37 No20, 4487-4495, 1996.
    37.李雅明,固態電子學,全華科技(1997)
    38.利俊鴻、王春山,“電子用低介電材料之合成與性質之研究“,國立成功大學碩士論文
    39.Y. L. Liu, G. H. Hsiue, and Y. S. Chiu, Polym. Sci. Part A : Polym Chem., 35(3), 565(1997)
    40.吳泰伯,強介電薄膜再半導體記憶體上之應用與發展,中國材料科學學會1996年度年會論文集 155(1996)
    41.吳朗,電子陶瓷介電,全欣圖書(1994)
    42.沈永清、張信貞、莊學瓶、張榮樹,高分子難燃機構及原理,化工資訊,第九卷第2期,15 (1995)
    43.Menachem Lewin, S. M. Atlas and Eli M. Pearce, Flame-retardant Polymeric Materials, Plenum Press, New York (1978)
    44.JP 特開平 10-7889 大日本油墨 DIK
    45.Y.-X. Wang, H. Ishida, Polymer, 40,4563-4570 (1998)

    下載圖示 校內:2005-06-07公開
    校外:2005-06-07公開
    QR CODE