| 研究生: |
黃昱銓 Huang, Yu-Cheng |
|---|---|
| 論文名稱: |
用於音頻應用之低功耗縮放式類比數位轉換器 Low Power Zoom ADCs for Audio Applications |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 縮放式類比數位轉換器 、動態放大器 |
| 外文關鍵詞: | Zoom ADC, Dynamic Amplifier |
| 相關次數: | 點閱:14 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文由兩個部分組成,第一部分實現了一個三階縮放式類比數位轉換器,使用動態放大器於第二級和第三級積分器降低功率消耗。使用台積電180奈米CMOS製程進行設計與驗證,當晶片操作在輸入電壓1.8伏特下,取樣頻率為每秒512萬次,頻寬為2萬赫茲 ; 在輸入訊號頻率為2千赫茲時,量測之訊號雜訊失真比達到102.8dB ; 晶片消耗652.5微瓦,換算得到整體效能指標是177.7dB。
第二部分提出一個使用視窗偵測技術應用於三階縮放式類比數位轉換器,動態偵測並調整參考電壓範圍,減少超取樣率以及三角積分類比數位轉換器中迴路濾波器的量化誤差訊號大小,降低整體功率消耗並提高訊號雜訊失真比。使用台積電180奈米CMOS製程進行設計與驗證,當晶片操作在輸入電壓1.65伏特下,取樣頻率為每秒340萬次,頻寬為2萬赫茲 ; 在輸入訊號頻率為1千赫茲時,量測之訊號雜訊失真比達到103dB ; 晶片消耗401微瓦,換算得到整體效能指標是180dB。
This thesis consists of two parts. The first part implements a third-order Zoom Analog-to-Digital Converter (ADC) utilizing dynamic amplifiers in the second and third integrators to reduce power consumption. Designed and verified using the TSMC 180-nm CMOS process, the chip operates at an input voltage of 1.8-V with a sampling rate of 5.12 MS/s and a bandwidth of 20 kHz. When processing an input signal at 2 kHz, the measured Signal-to-Noise-and-Distortion Ratio (SNDR) reaches 102.8 dB. The chip consumes 652.5 µW, achieving a Schreier Figure-of-Merit (FoMs) of 177.7 dB.
The second part proposes a window detection technique applied to a third-order Zoom ADC, which dynamically detects and adjusts the reference voltage range. This approach reduces OSR and the quantized error signal magnitude within the delta-sigma ADC loop filter, lowering overall power consumption while improving the SNDR. Also designed and verified using the TSMC 180-nm CMOS process, the chip operates at an input voltage of 1.65-V with a sampling rate of 3.4 MS/s and a bandwidth of 20 kHz. When processing an input signal at 1 kHz, the measured SNDR reaches 103 dB. The chip consumes 401 µW, achieving a Schreier Figure-of-Merit (FoMs) of 180 dB.
[1] B. Murmann, “ADC Performance Survey 1997-2024,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] S. Pavan, R. Schreier, G. C. Temes, and R. Schreier, Understanding delta-sigma data converters. (in English), 2017.
[3] T. Kuo, C. Yang, K. Chen, and W. Wang, “Design Method for High-Order Sigma–Delta Modulator Stabilized by Departure Angles Designed to Keep Root Loci in Unit Circle,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 53, no. 10, pp. 1083-1087, 2006.
[4] N. Maghari, S. Kwon, G. C. Temes and U. Moon, “Mixed-Order Sturdy MASH Δ-Σ Modulator,” in Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, LA, 2007, pp. 257-260.
[5] F. Chen, T. Kuendiger and S. Erfani, “Improved Direct Stability Analysis of High-Order Continuous-Time Sigma-Delta Modulators,” in Proc. of IEEE North-East Workshop on Circuits and Systems, Gatineau, Que., 2006, pp. 73-76.
[6] L. Breems and J. H. Huijsing, Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers, Kluwer Academic Publishers, 2001.
[7] A. Mesgarani, K. H. Sadeghi and S. U. Ay, “Continuous-Time/Discrete-Time (CT/DT) Cascaded Sigma-Delta Modulator for High Resolution and Wideband Applications,” in Proc. of IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, 2010, pp. 1-4.
[8] Y. Chae, K. Souri and K. A. A. Makinwa, “A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, Dec. 2013.
[9] B. Gönen, F. Sebastiano, R. van Veldhoven and K. A. A. Makinwa, “A 1.65mW 0.16mm2 dynamic zoom-ADC with 107.5dB DR in 20kHz BW,” IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 2016.
[10] B. Gönen, F. Sebastiano, R. Quan, R. van Veldhoven and K. A. A. Makinwa, “A Dynamic Zoom ADC With 109-dB DR for Audio Applications,” IEEE J. Solid-State Circuits, vol. 52, no. 6, pp. 1542-1550, June 2017.
[11] C. Liu, S. Chang, G. Huang and Y. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[12] P. Harpe et al., “A 26 W 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, issue. 7, pp. 1585-1595, May. 2011.
[13] Y. Zhu et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[14] G. -Y. Huang, S. -J. Chang, Y. -Z. Lin, C. -C. Liu and C. -P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” IEEE Asian Solid-State Circuits Conf. (A-SSCC) Dig. Tech. Papers, Singapore, 2013, pp. 289-292.
[15] C. -C. Liu, C. -H. Kuo and Y. -Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[16] M. Vadipour, “Techniques for preventing tonal behavior of data weighted averaging algorithm in Σ-Δ modulators,” IEEE Trans. Circuits and Syst. II: Analog and Digital Signal Processing, vol. 47, no. 11, pp. 1137-1144, Nov. 2000.
[17] R. E. Radke, A. Eshraghi and T. S. Fiez, “A 14-bit current-mode ΔΣ DAC based upon rotated data weighted averaging,” IEEE J. Solid-State Circuits vol. 35, no. 8, pp. 1074-1084, Aug. 2000.
[18] A. A. Hamoui and K. Martin, “Linearity enhancement of multibit ΔΣ modulators using pseudo data-weighted averaging,” in Proc. of IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, AZ, USA, 2002, pp. III-III.
[19] H. Zare-Hoseini, I. Kale and O. Shoaei, “Modeling of switched-capacitor delta-sigma Modulators in SIMULINK,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 4, pp. 1646-1654, Aug. 2005.
[20] S. Jaykar, P. Palsodkar and P. Dakhole, “Modeling of Sigma-Delta Modulator Non-Idealities in MATLAB/SIMULINK,” in Proc. of International Conference on Communication Systems and Network Technologies, Katra, Jammu, 2011, pp. 525-530.
[21] W. Chen, L. Meng, M. Zhao and Z. Tan, “Analysis and Design of a Low-Voltage High-Precision Switched-Capacitor Delta-Sigma Modulator,” IEEE Open J. Solid-State Circuits Society.
[22] I-J. Chao, “Design Techniques for Enhancing Power Efficiency of Delta-Sigma Modulators and Performance of Swithed-Cpacitor Circuits,” Ph.D. Dissertaion, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July, 2015.
[23] R. Schreier, J. Silva, J. Steensgaard and G. C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 52, no. 11, pp. 2358-2368, Nov. 2005.
[24] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[25] D. N. Jagadish and M. S. Bhat, “A Low Voltage Inverter Based Differential Amplifier for Low Power Switched Capacitor Applications,” in Proc. of Fifth International Symposium on Electronic System Design, Surathkal, India, 2014, pp. 58-62.
[26] X. Tang et al., “An Energy-Efficient Comparator with Dynamic Floating Inverter Amplifier,” IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 1011-1022, April 2020.
[27] Y. Wu, X. Cheng and X. Zeng, “A split-capacitor vcm-based capacitor-switching scheme for low-power SAR ADCs,” in Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013, pp. 2014-2017.
[28] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, “A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 2008, pp. 244-610.
[29] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
[30] K. -H. Chiang, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, “A 10b 100kS/s SAR ADC with charge recycling switching method,” IEEE Asian Solid-State Circuits Conf. (A-SSCC) Dig. Tech. Papers, Kao-Hsiung, Taiwan, 2014, pp. 329-332.
[31] E. Eland, S. Karmakar, B. Gönen, R. van Veldhoven and K. A. A. Makinwa, “A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW,” IEEE J. Solid-State Circuits, vol. 56, no. 4, pp. 1207-1215, April 2021.
[32] Y. Zhao, Z. Lu, S. Song, L. Zhao, M. Zhao and Z. Tan, “A 91.7dB-SNDR 5kHz BW 18.5μW PPD-based Single-OTA Zoom ADC using CLS-enhanced Inverter Amplifier,” in Proc. of IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Hangzhou, China, 2024, pp. 200-201.
[33] Y. Ding, L. Jia, J. Mei, L. Deng and R. Yin, “A 114.4-dB DR, 26-kHz BW Discrete-Time Incremental Zoom ADC,” in Proc. of IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Zhuhai, China, 2024.
[34] H. Song, L. Qian, G. He, Y. Li and Y. Liu, “An Incremental Zoom ADC With Quantization Level Shifting Technique For Over-Ranging Reduction,” in Proc. of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Taipei, Taiwan, 2024, pp. 387-391.
[35] Y. Shen et al., “A 182.9-dB FoM 108.2-dB SFDR Power/Bandwidth Configurable Fully Dynamic Switched-Capacitor Zoom ADC With Interstage Leakage Shaping,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 71, no. 9, pp. 3951-3960, Sept. 2024.
[36] E. Eland, S. Karmakar, B. Gönen, R. van Veldhoven and K. A. A. Makinwa, “A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW,” IEEE J. Solid-State Circuits, vol. 56, no. 4, pp. 1207-1215, April 2021.
[37] Y. Liang et al., “A Reconfigurable 12-to-18-Bit Dynamic Zoom ADC With Pole-Optimized Technique,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 70, no. 5, pp. 1940-1948, May 2023.
[38] Y. Zhao, M. Zhao and Z. Tan, “Fully Dynamic Zoom-ADC Based on Improved Swing-Enhanced FIAs Using CLS Technique With 1250× Bandwidth/Power Scalability,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 70, no. 6, pp. 1901-1905, June 2023.
[39] Q. Wu, S. Li and Z. Hong, “A 114.5-dB DR, 184.6-dB FoMDR Discrete-Time Self-Zoom ADC,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 71, no. 9, pp. 4076-4080, Sept. 2024.
[40] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012.