| 研究生: |
許異凡 HSU, YI-FAN |
|---|---|
| 論文名稱: |
奈米金屬球與球殼結構之表面電漿子特性分析研究 Surface Plasmon Properties of Metal Nanoparticles and Nanoshells |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 表面電漿子 、奈米粒子 、金 |
| 外文關鍵詞: | plasmon, nanoparticle, nanoshell |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用有限時域差分法(FDTD)模擬計算各種奈米尺度的金屬粒子結構物,並分析多種情況下奈米金屬粒子的表面電漿共振特性。研究結果顯示,奈米金屬粒子在矽基板上改變光入射角度可以引發相異的表面電漿共振模態。
此外也研究了多層奈米金球與球殼混合結構,它提供了高度的靈敏性在共振波長上。光學調控特性可以藉由控制球核與球殼尺寸大小比例達到所需的共振吸收波長,共振頻率的範圍介於可見光到近紅外光。當多層奈米金球與球殼混合結構在有缺陷情況下,即非對稱性結構對頻譜的關係有利於激發高階模態,此現象可以用電漿子混合理論來解釋。
當兩個多層奈米金球與球殼混和結構相鄰時,觀察兩者間距對吸收共振波長的關係,並探討等間距下改變球核直徑與球殼內外半徑厚度對強度與共振波長的影響。
In this thesis,we use the finite difference time domain method (FDTD) to simulate the surface plasmon resonance characteristics of nanoscale metallic nanoparticles,which are of different sizes and structure. The study results show that to change the incident angle of light can lead to different surface plasmon resonance mode for metallic nanoparticles placed on silicon substrate.
Besides, we also study multilayer of gold nanoparticles mixed with nanoshell structure, which provides a high degree of sensitivity in the resonant wavelength. The optical tunability can be regulated by controlling the size of core and shell to achieve the required resonance absorption wavelength,this allows the plasmon resonances into visible to near-infrared region. When the multilayer of gold nanoparticles mixed with nanoshell in defective cases, it was found that a larger offset correlates with red shifts in the resonance peaks , this phenomenon can be explained by plasmon hybridization theory.
When two multilayer of gold nanoparticles mixed with the shell adjacent to each other, we observe the relation between distance and resonance wavelength of absorption, and also discuss the effect of changing radius of core and shell on the resonance frequency mode.
[1] G. Mie, Ann. Phys. 25, 377 (1908).
[2] R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[3] H. Raether, “ Surface Plasmons on Smooth and Rough Surfaces and on Gratings ” _Springer, Berlin, (1988).
[4] U. Kreibig and M. Vollmer, “ Optical Properties of Metal Clusters” Springer, Berlin, (1995).
[5] 5W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature _London_ 424, 824(2003)
[6] S. A. Maier and H. A. Atwater,” Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures”, J. Appl. Phys. 98, 011101 (2005)
[7] Jorg P. Kottmann and Olivier J. F. Martin,” Plasmon resonances of silver nanowires with a nonregular cross section”,Phys. Rev. B 64, 235402 (2001).
[8] Prodan E, Radloff C, Halas N J and Nordlander P ,”A hybridization model for the plasmon response of complex nanostructures”, Science
302 419–22(2003).
[9] Corey Radloff, Naomi J. Halas. ,” Plasmonic Properties of Concentric Nanoshells”,Nano Lett. 4, 7(2004)
[10] N.K. Grady, N.J. Halas, P. Nordlander,” Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles ”, Chemical Physics Letters, 399,167–171 (2004)
[11] Leif J. Sherry, Shih-Hui Chang, George C. Schatz,Richard P. Van Duyne,”Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes”, Nano Lett. 5, 10(2005).
[12] Benjamin J. Wiley, Yeechi Chen,Joseph M. McLellan, Yujie Xiong,Zhi-Yuan Li, David Ginger, and Younan Xia ,” Synthesis and Optical Properties of Silver Nanobars and Nanorice ”,Nano Lett. 7, 4(2004)
[13] Mark W Knight, Naomi J Halas,” Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit”,New Journal of Physics 10, 105006 (2008)
[14] Lisa V. Brown, Heidar Sobhani, J. Britt Lassiter, Peter Nordlander, Naomi J. Halas,” Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs”. ACS Nano , 2,819–832(2010).
[15] 吳民耀、劉威志,”表面電漿子理論與模擬”,物理雙月刊 2期28卷, p. 486 (2006).
[16] 邱國斌、蔡定平,”金屬表面電漿簡介”,物理雙月刊 2期28卷, p. 472 (2006).
[17] A.V. Zayats et al. , Igor I. Smolyaninovb , Alexei A. Maradudinc , “Nano-optics of surface plasmon polaritons”,Physics Reports 408, 131–314(2005)
[18] Taflove A.,” Computational Electrodynamics:The Finite-Difference Time-Domain Method”,Boston,London : Artech House,(2005).
[19] 葛德彪,閻玉波,”電磁波時域有限差分法”,北京:北京大學出版社,(1994).
[20] J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Optics Express ,Vol. 8, No. 12, 655–663 (2001).
[21] Feng Hao, Colleen L. Nehl, Jason H. Hafner, and P. Nordlander ,” Plasmon Resonances of a Gold Nanostar ”,Nano Lett. 7, 3(2007)
[22] J. Britt Lassiter,Javier Aizpurua, Luis I. Hernandez,Daniel W. Brandl,Isabel Romero,Surbhi Lal,Jason H. Hafner,Peter Nordlander,
Naomi J. Halas, “Close Encounters between Two Nanoshells”, Nano Lett. 8, 4(2008).
[23] Hui Wang,Glenn P. Goodrich,Felicia Tam,Chris Oubre,Peter Nordlander,Naomi J. Halas,” Controlled Texturing Modifies the Surface Topography and Plasmonic Properties of Au Nanoshells”, J. Phys. Chem. B, Vol. 109, No. 22,( 2005).
[24] Fei Le,Daniel W. Brandl,Yaroslav A. Urzhumov,Hui Wang, Janardan Kundu,Naomi J. Halas,Javier Aizpurua,P. Nordlander,Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption”, ACS Nano , 2,4,707–718(2008).
[25] Encai Hao,Shuyou Li,Ryan C. Bailey,Shengli Zou,George C. Schatz,Joseph T. Hupp, “Optical Properties of Metal Nanoshells”,J. Phys. Chem. B 108, 1224-1229(2004).
[26] Daniel W. Brandl, Chris Oubre, Peter Nordlander,”Plasmon hybridization in nanoshell dimmers”, J. Chem. Phys. 123, 024701 (2005).
[28] F. Le,N. Z. Lwin,N. J. Halas,P. Nordlander,“Plasmonic interactions between a metallic nanoshell and a thin metallic film”,Phy. Rev. B 76, 165410 (2007)
[29] Feng Hao,Peter Nordlander,” Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities”, Phys. Rev. B 76, 245417 (2007)
[30] J. Aizpurua,P. Hanarp,D. S. Sutherland,M. Ka¨ ll,2Garnett W. Bryant,F. J. Garcı´a de Abajo,”Optical Properties of Gold Nanorings” Phys. Rev. Lett. 90.057401 (2003)
[31] Feng Hao,Yannick Sonnefraud,Pol Van Dorpe,Stefan A. Maier, Naomi J. Halas,Peter Nordlander,” Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance”, Nano Lett. 8, 11(2008).
[32] Feng Hao,Elin M. Larsson, Tamer A. Ali, Duncan S. Sutherland, Peter Nordlander,”Shedding light on dark plasmons in gold nanorings”, Chem. Phys. Lett. 458,262–266 (2008)
[33] Chris Oubre,P. Nordlander,“ Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method”,J. Phys. Chem. B, 108, 17740-17747(2004)
[34] Yannick Sonnefraud, Niels Verellen, Heidar Sobhani,Guy A.E. Vandenbosch,Victor V. Moshchalkov,Pol Van Dorpe,Peter Nordlander, Stefan A. Maier,”Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities”, ACS Nano , 4,3,1664–1670(2010).
[35] P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells “, Nano Lett. 7, 2854–2858 (2007).
[36] Xia, X. H.; Liu, Y.; Backman, V.; Ameer, G. A. Engineering
Sub-100 nm Multi-layer Nanoshells. Nanotechnology,17, 5435–5440 (2006).
[37] Johnson, P. B.; Christy, R. W. “ Optical Constants of the Noble Metals ”. Phys. Rev. B, 6, 4370–4379(1972).
[38] Ying Hu,Sterling J. Noelck,and Rebekah A. Drezek,”Symmetry Breaking in Gold_Silica_Gold Multilayer Nanoshells”, ACS Nano , 4,3,1521–1528(2010).