| 研究生: |
吳承霖 Wu, Cheng-Lin |
|---|---|
| 論文名稱: |
基於社群媒體數據建構假新聞之影響力分析與預測模型 MUFFLE: Multi-modal Fake News Influence Estimator on Twitter |
| 指導教授: |
解巽評
Hsieh, Hsun-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 假新聞 、影響力預測 、多面向學習 、文字探勘 |
| 外文關鍵詞: | Fake news, Influence estimator, Multi-modal learning, Text learning |
| 相關次數: | 點閱:154 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減輕社群媒體上假新聞傳播所造成的損害,在本研究中的研究問題聚焦假新聞影響力的預測以及分析,透過分析多面向的資料特徵,預測一篇分享假新聞的貼文未來在該社群平台的熱門程度。為了達到本研究的研究目標,我們提出了一個全面的預測框架 MUFFLE,透過對新聞相關的社群網路結構、參與傳遞的使用者資料以及新聞文章的文本內容進行編碼,能夠精確萃取出影響預測結果的決策因子。此外,在模型中我們實作的Attention 機制也能提供可解釋性 (Explainability),這對於後續的社群分析以及社會科學研究有重要的參考價值。為了印證我們提出的方法的有效性,本研究在具有指標性的真實資料集上進行詳盡的實驗。實驗結果顯示出本研究方法在Top-K之NDCG以及Hit Rate上皆優於目前最先進的popularity prediction 研究所提出的方法。此外,在現實應用中,本研究可以做為假新聞檢測的輔助工具。在防治偽造資訊流通的工作流中,如果一則新聞被預測識別為假新聞,MUFFLE可以估計其傳播的影響幅度,並作為更嚴格的人工審核的處理優先順序,進一步提高管理者的行政效能。
To mitigate the damage caused by diffusion of online fake news articles on social media platforms, we focus on the issue of fake news influence prediction; i.e., inferring how popular a fake news post might become on social platforms. To achieve our goal, we propose a comprehensive framework, MUFFLE, which captures multi-modal dynamics by encoding the representation of news-related social networks, user characteristics as well as content in text. The attention mechanism developed in the model can provide explainability for social or psychological analysis. We conducted extensive experiments on real-world datasets and as a result, our proposed MUFFLE outperforms both state-of-the-art method of popularity prediction and machine-based baselines in top-k NDCG and hit rate. Moreover, our work could be a complement tool of fake news detection. If a post is recognized (possibly, but not sure) as fake news by AI detection, MUFFLE can estimate its impacts of spreading, and remind the manager whether to conduct a rigorously manual review.
[1]. Allcott, H. and Gentzkow, M.2017. “Social media and fake news in the 2016
election.” Journal of Economic Perspectives.
[2]. Bai, S., Kolter, J.Z. and Koltun, V.2018. “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling.” arXiv.
[3]. Bakshy, E., Mason, W.A., Hofman, J.M. and Watts, D.J.2011. “Everyone’s an
influencer: Quantifying influence on twitter. ” Proceedings of the 4th ACM
International Conference on Web Search and Data Mining, WSDM 2011 (2011).
[4]. Bao, P., Shen, H.W., Huang, J. and Cheng, X.Q.2013. “Popularity prediction in
microblogging network: A case study on sina weibo. ” WWW 2013 Companion -
Proceedings of the 22nd International Conference on World Wide Web (2013).
[5]. Bessi, A. and Ferrara, E.2016. “Social bots distort the 2016 U.S. Presidential
election online discussion. First Monday.” (2016).
DOI:https://doi.org/10.5210/fm.v21i11.7090.
[6]. Cao, Q., Shen, H., Cen, K., Ouyang, W. and Cheng, X.2017. “DeepHawkes:
Bridging the gap between prediction and understanding of information cascades. ”
International Conference on Information and Knowledge Management,
Proceedings (2017).
[7]. Cao, Q., Shen, H., Gao, J., Wei, B. and Cheng, X.2020. “Popularity prediction on
social platforms with coupled graph neural networks. ” WSDM 2020 -
Proceedings of the 13th International Conference on Web Search and Data Mining
(2020).
[8]. Castillo, C., Mendoza, M. and Poblete, B.2011. “Information credibility on
Twitter. ” Proceedings of the 20th International Conference Companion on
World Wide Web, WWW 2011 (2011).
40
[9]. Chen, T. and Guestrin, C.2016. “XGBoost: A scalable tree boosting system. ”
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2016).
[10].Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T. and Zhang, F.2019.
“Information diffusion prediction via recurrent cascades convolution.”
Proceedings - International Conference on Data Engineering (2019).
[11].Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J. and Leskovec, J.2014. “Can
cascades be predicted?” WWW 2014 - Proceedings of the 23rd International
Conference on World Wide Web (2014).
[12].Cho, K., VanMerriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H. and Bengio, Y.2014. “Learning phrase representations using RNN encoderdecoder for statistical machine translation. ” EMNLP 2014 - 2014 Conference on
Empirical Methods in Natural Language Processing, Proceedings of the
Conference (2014).
[13].Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W. and Yang, S.2013. “Cascading outbreak
prediction in networks: A data-driven approach.” Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(2013).
[14].Feng, M.H., Hsu, C.C., Li, C.Te, Yeh, M.Y. and Lin, S.De2019. “Marine: Multirelational network embeddings with relational proximity and node attributes. ” The
Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW
2019 (2019).
[15].Gao, J., Shen, H., Liu, S. and Cheng, X.2016. “Modeling and Predicting
Retweeting Dynamics via a Mixture Process. ” (2016).
41
[16].Gao, S., Ma, J. and Chen, Z.2015. “Modeling and predicting retweeting dynamics
on microblogging platforms. ” WSDM 2015 - Proceedings of the 8th ACM
International Conference on Web Search and Data Mining (2015).
[17].Guo, C., Cao, J., Zhang, X., Shu, K. and Liu, H.2019. “Exploiting Emotions for
Fake News Detection on Social Media. ” arXiv preprint arXiv:1903.01728. (2019).
[18].Hong, L., Dan, O. and Davison, B.D.2011. “Predicting popular messages in
Twitter.” Proceedings of the 20th International Conference Companion on World
Wide Web, WWW 2011 (2011).
[19].Hutto, C.J. and Gilbert, E.2014. “VADER: A parsimonious rule-based model for
sentiment analysis of social media text. ” Proceedings of the 8th International
Conference on Weblogs and Social Media, ICWSM 2014 (2014).
[20].Islam, M.S., Sarkar, T., Khan, S.H., Kamal, A.H.M., Murshid Hasan, S.M., Kabir,
A., Yeasmin, D., Islam, M.A., Chowdhury, K.I.A., Anwar, K.S., Chughtai, A.A.
and Seale, H.2020. “COVID-19-Related infodemic and its impact on public health:
A global social media analysis.” American Journal of Tropical Medicine and
Hygiene. (2020). DOI:https://doi.org/10.4269/ajtmh.20-0812.
[21].Jenders, M., Kasneci, G. and Naumann, F.2013. “Analyzing and predicting viral
tweets.” WWW 2013 Companion - Proceedings of the 22nd International
Conference on World Wide Web (2013).
[22].Jiang, J.Y., Li, C.Te, Chen, Y. and Wang, W.2018. “Identifying users behind
shared accounts in online streaming services.” 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2018
(2018).
[23].Kipf, T.N. and Welling, M.2017. “Semi-supervised classification with graph
convolutional networks.” 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings (2017).
42
[24].Lerman, K. and Galstyan, A.2008. “Analysis of social voting patterns on Digg.”
Proceedings of the ACM SIGCOMM 2008 Conference on Computer
Communications -1st Workshop on Online Social Networks, WOSP’08 (2008).
[25].Li, C., Ma, J., Guo, X. and Mei, Q.2017. “DeepCas: An end-to-end predictor of
information cascades.” 26th International World Wide Web Conference, WWW
2017 (2017).
[26].Liu, Y., Bao, Z., Zhang, Z., Tang, D. and Xiong, F.2020. “Information cascades
prediction with attention neural network.” Human-centric Computing and
Information Sciences. (2020). DOI:https://doi.org/10.1186/s13673-020-00218-w.
[27].Liu, Y. and Wu, Y.F.B.2018. “Early detection of fake news on social media
through propagation path classification with recurrent and convolutional networks.”
32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018).
[28].Lu, Y.J. and Li, C.Te2020. “GCAN: Graph-aware Co-Attention Networks for
Explainable Fake News Detection on Social Media.” arXiv.
[29].Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F. and Cha, M.2016.
“Detecting rumors from microblogs with recurrent neural networks.” IJCAI
International Joint Conference on Artificial Intelligence (2016).
[30].Ma, J., Gao, W. and Wong, K.F.2017. “Detect rumors in microblog posts using
propagation structure via kernel learning.” ACL 2017 - 55th Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Conference
(Long Papers) (2017).
[31].Ma, J., Gao, W. and Wong, K.F.2018. “Rumor detection on twitter with treestructured recursive neural networks.” ACL 2018 - 56th Annual Meeting of the
Association for Computational Linguistics, Proceedings of the Conference (Long
Papers) (2018).
43
[32].Ma, Z., Sun, A. and Cong, G.2013. “On predicting the popularity of newly
emerging hashtags in Twitter.” Journal of the American Society for Information
Science and Technology. (2013). DOI:https://doi.org/10.1002/asi.22844.
[33].Mishra, S., Rizoiu, M.A. and Xie, L.2016. “Feature driven and point process
approaches for popularity prediction.” International Conference on Information
and Knowledge Management, Proceedings (2016).
[34].Paul, C. and Matthews, M.2017. “The Russian “Firehose of Falsehood”
Propaganda Model: Why It Might Work and Options to Counter It.”
[35].Petrovic, S., Osborne, M. and Lavrenko, V.2011. “Rt to win! predicting message
propagation in twitter.” Proceedings of the Fifth International Conference on
Weblogs and Social Media - ICWSM ’11. (2011).
[36].Pinto, H., Almeida, J.M. and Gonçalves, M.A.2013. “Using early view patterns to
predict the popularity of YouTube videos.” WSDM 2013 - Proceedings of the 6th
ACM International Conference on Web Search and Data Mining (2013).
[37].Popat, K.2019. “Assessing the credibility of claims on the web.” 26th International
World Wide Web Conference 2017, WWW 2017 Companion (2019).
[38].Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J. and Stein, B.2018. “A
stylometric inquiry into hyperpartisan and fake news.” ACL 2018 - 56th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the
Conference (Long Papers) (2018).
[39].Quattrociocchi, W., Scala, A. and Sunstein, C.R.2018. “Echo Chambers on
Facebook. SSRN Electronic Journal.” (2018).
DOI:https://doi.org/10.2139/ssrn.2795110.
[40].Romero, D.M., Tan, C. and Ugander, J.2013. “On the interplay between social and
topical structure.” Proceedings of the 7th International Conference on Weblogs
and Social Media, ICWSM 2013 (2013).
44
[41].Ruchansky, N., Seo, S. and Liu, Y.2017. “CSI: A hybrid deep model for fake news
detection.” International Conference on Information and Knowledge Management,
Proceedings (2017).
[42].Sampson, J., Morstatter, F., Wu, L. and Liu, H.2016. “Leveraging the implicit
structure within social media for emergent rumor detection.” International
Conference on Information and Knowledge Management, Proceedings (2016).
[43].Sanh, V., Debut, L., Chaumond, J. and Wolf, T.2019. “DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter.” arXiv.
[44].Shen, H., Wang, D., Song, C. and Barabási, A.L.2014. “Modeling and predicting
popularity dynamics via reinforced Poisson Processes.” Proceedings of the
National Conference on Artificial Intelligence (2014).
[45].Shu, K., Cui, L., Wang, S., Lee, D. and Liu, H.2019. “Defend: Explainable fake
news detection.” Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2019).
[46].Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H.2018. “FakeNewsNet:
A data repository with news content, social context and spatiotemporal
information for studying fake news on social media.” arXiv.
[47].Shu, K., Mahudeswaran, D., Wang, S. and Liu, H.2019. “Hierarchical propagation
networks for fake news detection: Investigation and exploitation.” arXiv.
[48].Shu, K., Sliva, A., Wang, S., Tang, J. and Liu, H.2017. “Fake news detection on
social media: A data mining perspective.” arXiv.
[49].Shu, K., Zhou, X., Wang, S., Zafarani, R. and Liu, H.2019. “The role of user
profiles for fake news detection.” Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2019 (2019).
45
[50].Shulman, B., Sharma, A. and Cosley, D.2016. “Predictability of popularity: Gaps
between prediction and understanding.” Proceedings of the 10th International
Conference on Web and Social Media, ICWSM 2016 (2016).
[51].Szabo, G. and Huberman, B.A.2010. “Predicting the popularity of online content.”
Communications of the ACM. (2010).
DOI:https://doi.org/10.1145/1787234.1787254.
[52].Tsur, O. and Rappoport, A.2012. “What’s in a hashtag? Content based prediction
of the spread of ideas in microblogging communities.” WSDM 2012 - Proceedings
of the 5th ACM International Conference on Web Search and Data Mining (2012).
[53].Wang, J., Zheng, V.W., Liu, Z. and Chang, K.C.C.2017. “Topological recurrent
neural network for diffusion prediction.” Proceedings - IEEE International
Conference on Data Mining, ICDM (2017).
[54].Wang, K., Bansal, M. and Frahm, J.M.2018. “Retweet wars: Tweet popularity
prediction via dynamic multimodal regression.” Proceedings - 2018 IEEE Winter
Conference on Applications of Computer Vision, WACV 2018 (2018).
[55].Wang, P.C. and Li, C.Te2019. “Spotting terrorists by learning behavior-aware
heterogeneous network embedding.” International Conference on Information and
Knowledge Management, Proceedings (2019).
[56].Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L. and Gao, J.2018.
“EANN: Event adversarial neural networks for multi-modal fake news detection.”
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2018).
[57].Wang, Y., Shen, H., Liu, S., Gao, J. and Cheng, X.2017. “Cascade dynamics
modeling with attention-based recurrent neural network.” IJCAI International
Joint Conference on Artificial Intelligence (2017).
46
[58].Weng, L., Menczer, F. and Ahn, Y.Y.2014. “Predicting successful memes using
network and community structure.” Proceedings of the 8th International
Conference on Weblogs and Social Media, ICWSM 2014 (2014).
[59].Yang, F., Yu, X., Liu, Y. and Yang, M.2012. “Automatic detection of rumor on
Sina Weibo.” Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2012).
[60].Zhao, Z., Resnick, P. and Mei, Q.2015. “Enquiring minds: Early detection of
rumors in social media from enquiry posts.” WWW 2015 - Proceedings of the 24th
International Conference on World Wide Web (2015).
校內:2026-07-04公開