簡易檢索 / 詳目顯示

研究生: 吳承霖
Wu, Cheng-Lin
論文名稱: 基於社群媒體數據建構假新聞之影響力分析與預測模型
MUFFLE: Multi-modal Fake News Influence Estimator on Twitter
指導教授: 解巽評
Hsieh, Hsun-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 46
中文關鍵詞: 假新聞影響力預測多面向學習文字探勘
外文關鍵詞: Fake news, Influence estimator, Multi-modal learning, Text learning
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減輕社群媒體上假新聞傳播所造成的損害,在本研究中的研究問題聚焦假新聞影響力的預測以及分析,透過分析多面向的資料特徵,預測一篇分享假新聞的貼文未來在該社群平台的熱門程度。為了達到本研究的研究目標,我們提出了一個全面的預測框架 MUFFLE,透過對新聞相關的社群網路結構、參與傳遞的使用者資料以及新聞文章的文本內容進行編碼,能夠精確萃取出影響預測結果的決策因子。此外,在模型中我們實作的Attention 機制也能提供可解釋性 (Explainability),這對於後續的社群分析以及社會科學研究有重要的參考價值。為了印證我們提出的方法的有效性,本研究在具有指標性的真實資料集上進行詳盡的實驗。實驗結果顯示出本研究方法在Top-K之NDCG以及Hit Rate上皆優於目前最先進的popularity prediction 研究所提出的方法。此外,在現實應用中,本研究可以做為假新聞檢測的輔助工具。在防治偽造資訊流通的工作流中,如果一則新聞被預測識別為假新聞,MUFFLE可以估計其傳播的影響幅度,並作為更嚴格的人工審核的處理優先順序,進一步提高管理者的行政效能。

    To mitigate the damage caused by diffusion of online fake news articles on social media platforms, we focus on the issue of fake news influence prediction; i.e., inferring how popular a fake news post might become on social platforms. To achieve our goal, we propose a comprehensive framework, MUFFLE, which captures multi-modal dynamics by encoding the representation of news-related social networks, user characteristics as well as content in text. The attention mechanism developed in the model can provide explainability for social or psychological analysis. We conducted extensive experiments on real-world datasets and as a result, our proposed MUFFLE outperforms both state-of-the-art method of popularity prediction and machine-based baselines in top-k NDCG and hit rate. Moreover, our work could be a complement tool of fake news detection. If a post is recognized (possibly, but not sure) as fake news by AI detection, MUFFLE can estimate its impacts of spreading, and remind the manager whether to conduct a rigorously manual review.

    摘要 I Abstract II Table of Contents III List of Tables V List of Figures VI Chapter 1 INTRODUCTION 1 Chapter 2 RELATED WORK 5 2.1. Information Cascade Prediction 5 2.2. Fake News Detection 6 Chapter 3 PRELIMINARIES 9 3.1. Defining Fake News 9 3.2. Fake News on Social Media 9 3.3. Information Cascade in Social Media 10 3.4. Data Structure on Twitter 11 3.5. Problem Statements 12 Chapter 4 THE PROPOSED FRAMEWORK 13 4.1. Social Network Encoding 14 4.2. User Timeline Representation 18 4.3. User Profile Representation 19 4.4. Source Tweet Encoding 20 4.5. Attention and Overall Prediction 20 Chapter 5 EXPERIMENTS 22 5.1. Dataset 22 5.2. Experiment Settings 25 5.3. Prediction Performance 26 5.4. Ablation Study 29 5.5. Observation Window Study 31 5.6. Explainability and Case Study 35 Chapter 6 CONCLUSION 38 REFERENCE 39

    [1]. Allcott, H. and Gentzkow, M.2017. “Social media and fake news in the 2016
    election.” Journal of Economic Perspectives.
    [2]. Bai, S., Kolter, J.Z. and Koltun, V.2018. “An empirical evaluation of generic
    convolutional and recurrent networks for sequence modeling.” arXiv.
    [3]. Bakshy, E., Mason, W.A., Hofman, J.M. and Watts, D.J.2011. “Everyone’s an
    influencer: Quantifying influence on twitter. ” Proceedings of the 4th ACM
    International Conference on Web Search and Data Mining, WSDM 2011 (2011).
    [4]. Bao, P., Shen, H.W., Huang, J. and Cheng, X.Q.2013. “Popularity prediction in
    microblogging network: A case study on sina weibo. ” WWW 2013 Companion -
    Proceedings of the 22nd International Conference on World Wide Web (2013).
    [5]. Bessi, A. and Ferrara, E.2016. “Social bots distort the 2016 U.S. Presidential
    election online discussion. First Monday.” (2016).
    DOI:https://doi.org/10.5210/fm.v21i11.7090.
    [6]. Cao, Q., Shen, H., Cen, K., Ouyang, W. and Cheng, X.2017. “DeepHawkes:
    Bridging the gap between prediction and understanding of information cascades. ”
    International Conference on Information and Knowledge Management,
    Proceedings (2017).
    [7]. Cao, Q., Shen, H., Gao, J., Wei, B. and Cheng, X.2020. “Popularity prediction on
    social platforms with coupled graph neural networks. ” WSDM 2020 -
    Proceedings of the 13th International Conference on Web Search and Data Mining
    (2020).
    [8]. Castillo, C., Mendoza, M. and Poblete, B.2011. “Information credibility on
    Twitter. ” Proceedings of the 20th International Conference Companion on
    World Wide Web, WWW 2011 (2011).
    40
    [9]. Chen, T. and Guestrin, C.2016. “XGBoost: A scalable tree boosting system. ”
    Proceedings of the ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining (2016).
    [10].Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T. and Zhang, F.2019.
    “Information diffusion prediction via recurrent cascades convolution.”
    Proceedings - International Conference on Data Engineering (2019).
    [11].Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J. and Leskovec, J.2014. “Can
    cascades be predicted?” WWW 2014 - Proceedings of the 23rd International
    Conference on World Wide Web (2014).
    [12].Cho, K., VanMerriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
    H. and Bengio, Y.2014. “Learning phrase representations using RNN encoderdecoder for statistical machine translation. ” EMNLP 2014 - 2014 Conference on
    Empirical Methods in Natural Language Processing, Proceedings of the
    Conference (2014).
    [13].Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W. and Yang, S.2013. “Cascading outbreak
    prediction in networks: A data-driven approach.” Proceedings of the ACM
    SIGKDD International Conference on Knowledge Discovery and Data Mining
    (2013).
    [14].Feng, M.H., Hsu, C.C., Li, C.Te, Yeh, M.Y. and Lin, S.De2019. “Marine: Multirelational network embeddings with relational proximity and node attributes. ” The
    Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW
    2019 (2019).
    [15].Gao, J., Shen, H., Liu, S. and Cheng, X.2016. “Modeling and Predicting
    Retweeting Dynamics via a Mixture Process. ” (2016).
    41
    [16].Gao, S., Ma, J. and Chen, Z.2015. “Modeling and predicting retweeting dynamics
    on microblogging platforms. ” WSDM 2015 - Proceedings of the 8th ACM
    International Conference on Web Search and Data Mining (2015).
    [17].Guo, C., Cao, J., Zhang, X., Shu, K. and Liu, H.2019. “Exploiting Emotions for
    Fake News Detection on Social Media. ” arXiv preprint arXiv:1903.01728. (2019).
    [18].Hong, L., Dan, O. and Davison, B.D.2011. “Predicting popular messages in
    Twitter.” Proceedings of the 20th International Conference Companion on World
    Wide Web, WWW 2011 (2011).
    [19].Hutto, C.J. and Gilbert, E.2014. “VADER: A parsimonious rule-based model for
    sentiment analysis of social media text. ” Proceedings of the 8th International
    Conference on Weblogs and Social Media, ICWSM 2014 (2014).
    [20].Islam, M.S., Sarkar, T., Khan, S.H., Kamal, A.H.M., Murshid Hasan, S.M., Kabir,
    A., Yeasmin, D., Islam, M.A., Chowdhury, K.I.A., Anwar, K.S., Chughtai, A.A.
    and Seale, H.2020. “COVID-19-Related infodemic and its impact on public health:
    A global social media analysis.” American Journal of Tropical Medicine and
    Hygiene. (2020). DOI:https://doi.org/10.4269/ajtmh.20-0812.
    [21].Jenders, M., Kasneci, G. and Naumann, F.2013. “Analyzing and predicting viral
    tweets.” WWW 2013 Companion - Proceedings of the 22nd International
    Conference on World Wide Web (2013).
    [22].Jiang, J.Y., Li, C.Te, Chen, Y. and Wang, W.2018. “Identifying users behind
    shared accounts in online streaming services.” 41st International ACM SIGIR
    Conference on Research and Development in Information Retrieval, SIGIR 2018
    (2018).
    [23].Kipf, T.N. and Welling, M.2017. “Semi-supervised classification with graph
    convolutional networks.” 5th International Conference on Learning
    Representations, ICLR 2017 - Conference Track Proceedings (2017).
    42
    [24].Lerman, K. and Galstyan, A.2008. “Analysis of social voting patterns on Digg.”
    Proceedings of the ACM SIGCOMM 2008 Conference on Computer
    Communications -1st Workshop on Online Social Networks, WOSP’08 (2008).
    [25].Li, C., Ma, J., Guo, X. and Mei, Q.2017. “DeepCas: An end-to-end predictor of
    information cascades.” 26th International World Wide Web Conference, WWW
    2017 (2017).
    [26].Liu, Y., Bao, Z., Zhang, Z., Tang, D. and Xiong, F.2020. “Information cascades
    prediction with attention neural network.” Human-centric Computing and
    Information Sciences. (2020). DOI:https://doi.org/10.1186/s13673-020-00218-w.
    [27].Liu, Y. and Wu, Y.F.B.2018. “Early detection of fake news on social media
    through propagation path classification with recurrent and convolutional networks.”
    32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018).
    [28].Lu, Y.J. and Li, C.Te2020. “GCAN: Graph-aware Co-Attention Networks for
    Explainable Fake News Detection on Social Media.” arXiv.
    [29].Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F. and Cha, M.2016.
    “Detecting rumors from microblogs with recurrent neural networks.” IJCAI
    International Joint Conference on Artificial Intelligence (2016).
    [30].Ma, J., Gao, W. and Wong, K.F.2017. “Detect rumors in microblog posts using
    propagation structure via kernel learning.” ACL 2017 - 55th Annual Meeting of
    the Association for Computational Linguistics, Proceedings of the Conference
    (Long Papers) (2017).
    [31].Ma, J., Gao, W. and Wong, K.F.2018. “Rumor detection on twitter with treestructured recursive neural networks.” ACL 2018 - 56th Annual Meeting of the
    Association for Computational Linguistics, Proceedings of the Conference (Long
    Papers) (2018).
    43
    [32].Ma, Z., Sun, A. and Cong, G.2013. “On predicting the popularity of newly
    emerging hashtags in Twitter.” Journal of the American Society for Information
    Science and Technology. (2013). DOI:https://doi.org/10.1002/asi.22844.
    [33].Mishra, S., Rizoiu, M.A. and Xie, L.2016. “Feature driven and point process
    approaches for popularity prediction.” International Conference on Information
    and Knowledge Management, Proceedings (2016).
    [34].Paul, C. and Matthews, M.2017. “The Russian “Firehose of Falsehood”
    Propaganda Model: Why It Might Work and Options to Counter It.”
    [35].Petrovic, S., Osborne, M. and Lavrenko, V.2011. “Rt to win! predicting message
    propagation in twitter.” Proceedings of the Fifth International Conference on
    Weblogs and Social Media - ICWSM ’11. (2011).
    [36].Pinto, H., Almeida, J.M. and Gonçalves, M.A.2013. “Using early view patterns to
    predict the popularity of YouTube videos.” WSDM 2013 - Proceedings of the 6th
    ACM International Conference on Web Search and Data Mining (2013).
    [37].Popat, K.2019. “Assessing the credibility of claims on the web.” 26th International
    World Wide Web Conference 2017, WWW 2017 Companion (2019).
    [38].Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J. and Stein, B.2018. “A
    stylometric inquiry into hyperpartisan and fake news.” ACL 2018 - 56th Annual
    Meeting of the Association for Computational Linguistics, Proceedings of the
    Conference (Long Papers) (2018).
    [39].Quattrociocchi, W., Scala, A. and Sunstein, C.R.2018. “Echo Chambers on
    Facebook. SSRN Electronic Journal.” (2018).
    DOI:https://doi.org/10.2139/ssrn.2795110.
    [40].Romero, D.M., Tan, C. and Ugander, J.2013. “On the interplay between social and
    topical structure.” Proceedings of the 7th International Conference on Weblogs
    and Social Media, ICWSM 2013 (2013).
    44
    [41].Ruchansky, N., Seo, S. and Liu, Y.2017. “CSI: A hybrid deep model for fake news
    detection.” International Conference on Information and Knowledge Management,
    Proceedings (2017).
    [42].Sampson, J., Morstatter, F., Wu, L. and Liu, H.2016. “Leveraging the implicit
    structure within social media for emergent rumor detection.” International
    Conference on Information and Knowledge Management, Proceedings (2016).
    [43].Sanh, V., Debut, L., Chaumond, J. and Wolf, T.2019. “DistilBERT, a distilled
    version of BERT: Smaller, faster, cheaper and lighter.” arXiv.
    [44].Shen, H., Wang, D., Song, C. and Barabási, A.L.2014. “Modeling and predicting
    popularity dynamics via reinforced Poisson Processes.” Proceedings of the
    National Conference on Artificial Intelligence (2014).
    [45].Shu, K., Cui, L., Wang, S., Lee, D. and Liu, H.2019. “Defend: Explainable fake
    news detection.” Proceedings of the ACM SIGKDD International Conference on
    Knowledge Discovery and Data Mining (2019).
    [46].Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H.2018. “FakeNewsNet:
    A data repository with news content, social context and spatiotemporal
    information for studying fake news on social media.” arXiv.
    [47].Shu, K., Mahudeswaran, D., Wang, S. and Liu, H.2019. “Hierarchical propagation
    networks for fake news detection: Investigation and exploitation.” arXiv.
    [48].Shu, K., Sliva, A., Wang, S., Tang, J. and Liu, H.2017. “Fake news detection on
    social media: A data mining perspective.” arXiv.
    [49].Shu, K., Zhou, X., Wang, S., Zafarani, R. and Liu, H.2019. “The role of user
    profiles for fake news detection.” Proceedings of the 2019 IEEE/ACM
    International Conference on Advances in Social Networks Analysis and Mining,
    ASONAM 2019 (2019).
    45
    [50].Shulman, B., Sharma, A. and Cosley, D.2016. “Predictability of popularity: Gaps
    between prediction and understanding.” Proceedings of the 10th International
    Conference on Web and Social Media, ICWSM 2016 (2016).
    [51].Szabo, G. and Huberman, B.A.2010. “Predicting the popularity of online content.”
    Communications of the ACM. (2010).
    DOI:https://doi.org/10.1145/1787234.1787254.
    [52].Tsur, O. and Rappoport, A.2012. “What’s in a hashtag? Content based prediction
    of the spread of ideas in microblogging communities.” WSDM 2012 - Proceedings
    of the 5th ACM International Conference on Web Search and Data Mining (2012).
    [53].Wang, J., Zheng, V.W., Liu, Z. and Chang, K.C.C.2017. “Topological recurrent
    neural network for diffusion prediction.” Proceedings - IEEE International
    Conference on Data Mining, ICDM (2017).
    [54].Wang, K., Bansal, M. and Frahm, J.M.2018. “Retweet wars: Tweet popularity
    prediction via dynamic multimodal regression.” Proceedings - 2018 IEEE Winter
    Conference on Applications of Computer Vision, WACV 2018 (2018).
    [55].Wang, P.C. and Li, C.Te2019. “Spotting terrorists by learning behavior-aware
    heterogeneous network embedding.” International Conference on Information and
    Knowledge Management, Proceedings (2019).
    [56].Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L. and Gao, J.2018.
    “EANN: Event adversarial neural networks for multi-modal fake news detection.”
    Proceedings of the ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining (2018).
    [57].Wang, Y., Shen, H., Liu, S., Gao, J. and Cheng, X.2017. “Cascade dynamics
    modeling with attention-based recurrent neural network.” IJCAI International
    Joint Conference on Artificial Intelligence (2017).
    46
    [58].Weng, L., Menczer, F. and Ahn, Y.Y.2014. “Predicting successful memes using
    network and community structure.” Proceedings of the 8th International
    Conference on Weblogs and Social Media, ICWSM 2014 (2014).
    [59].Yang, F., Yu, X., Liu, Y. and Yang, M.2012. “Automatic detection of rumor on
    Sina Weibo.” Proceedings of the ACM SIGKDD International Conference on
    Knowledge Discovery and Data Mining (2012).
    [60].Zhao, Z., Resnick, P. and Mei, Q.2015. “Enquiring minds: Early detection of
    rumors in social media from enquiry posts.” WWW 2015 - Proceedings of the 24th
    International Conference on World Wide Web (2015).

    無法下載圖示 校內:2026-07-04公開
    校外:2026-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE