| 研究生: |
石哲維 Shih, Che-Wei |
|---|---|
| 論文名稱: |
以超音波噴霧熱裂解法成長奈米結構氧化鎵及應用於紫外光檢測器之研究 Investigations of β-Ga2O3 Nanostructure Grown by Ultrasonic Spray Pyrolysis Deposition and Its Application to Ultraviolet Photodetectors |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 超音波噴霧熱裂解法 、紫外光檢測器 、氧化鎵 、奈米結構 、錫摻雜 、熱擴散 、光二極體 |
| 外文關鍵詞: | Ultrasonic spray pyrolysis deposition, ultraviolet photodetector, gallium oxide, nanostructure, Sn doping, thermal diffusion, photodiode |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討利用超音波噴霧熱裂解法成長奈米結構氧化鎵應用於紫外光檢測器。超音波噴霧熱裂解沉積法是一種成本低廉、非真空、製程時間短且易於調變前驅物參雜濃度之薄膜沉積技術。我們將該技術應用於二種紫外光檢測器上,分別為金屬-半導體-金屬、pN結構。此外,我們藉由沉積氧化鐵緩衝層及摻雜四價錫離子以改善其性能。
為了瞭解奈米結構氧化鎵之結晶性、晶格結構、化學組成、氧空缺、膜厚、缺陷能帶、折射係數、介電函數、材料能隙、載子濃度,在本研究中使用(一)X-射線繞射分析、(二)X-射線光電子能譜學、(三)掃描式電子顯微鏡、(四)穿透式電子顯微鏡、(五)光致發光、(六)椭圓偏光儀、(七)霍爾量測。
首先,我們使用X-射線繞射分析確認晶格結構為奈米結構氧化鎵,我們採用X-射線光電子能譜學分析氧空缺與退火之關係、退火時間與溫度對於元件內部元素的影響,並與隨後的光致發光測量獲得一致性的結果。隨後利用掃描式電子顯微鏡與穿透式電子顯微鏡確認樣品表面與厚度,並分析其元素分布。最後,椭圓偏光儀用於換算樣品之能帶符合理論值,而霍爾量測驗證了其載子濃度與摻雜之關係。
在材料分析足夠後,我們製作了以奈米結構氧化鎵為基底的紫外光檢測器,可應用於紫外光C之波段檢測。隨後,我們以氧化鐵做為緩衝層改善其晶格差排,並藉由熱擴散摻雜錫離子增加其載子濃度而改善電導率,並成功將光暗電流比由起始的3.59提升到5.53*103,而光響應也由2.64*10-5 A/W提升至0.09 A/W。
在pN結構的部分,我們製作了由p型矽基板與奈米結構氧化鎵組成之紫外光檢測器。藉由其內建電場提升元件特性。我們藉由多項元件分析分別比較金屬-半導體-金屬結構與pN結構製備之紫外光檢測器的特性,光響應達到5.52A/W,並改善響應時至1.1秒及1.9秒,另外也發現了自供電特性,由此我們證實了pN結構可以有效地增強紫外光檢測器的電性表現。
在本論文中,我們以超音波噴霧熱裂解沉積法製備的奈米結構氧化鎵紫外光檢測器相對於其他沉積方法而言,具有低成本且製程快速的優點。而我們也透過調變退火與熱擴散摻雜之參數來達到其最佳化之性能。因此,我們認為超音波噴霧熱裂解沉積法在工業的應用上極具優勢與潛力。
This thesis mainly investigates on the application of the ultrasonic spray pyrolysis deposition to grow gallium oxide nanostructure for ultraviolet photodetectors. Ultrasonic spray pyrolysis deposition method is a low-cost, non-vacuum, short process time, and easy to adjust the precursor concentration of thin film deposition technology. this technology is devided into two types of ultraviolet photodetectors, namely metal-semicond uctor-metal (MSM) and pN structures. In addition, the performance is improved by depositing an iron oxide buffer layer and doping with tetravalent tin ions.
In order to realize the crystallinity, crystal structure, chemical composition, oxygen vacancies, film thickness, defect energy bandgap, refractive index, dielectric function, material energy bandgap, and carrier concentration of gallium oxide nanostructure, we use (1 ) X-ray diffraction analysis, (2) X-ray photoelectron spectroscopy, (3) scanning electron microscope, (4)transmission electron microscope, (5) photoluminescence, (6) ellipsometry , (7) Hall measurement.
First, X-ray diffraction analysis is used to confirm that the lattice structure is gallium oxide nanostructure. X-ray photoelectron spectroscopy is used to analyze the relationship between oxygen vacancies and annealing, and the effects of annealing time and temperature on the elements inside the devices. And apply the photoluminescence measurement to cofirm results. Then scanning electron microscopy and transmission electron microscopy are used to confirm the sample surface and thickness, and analyze its element distribution. Finally, the ellipsometry is employed to calculate the energy bandgap of the sample, and with Hall measurement to verify the relationship between carrier concentration and doping.
After the material analysis, we fabricated nanostructured Ga2O3-based UV photodetectors, for the UV-C band detection. Subsequently, Fe2O3 is used to be a buffer layer to improve its lattice dislocation, and doped tin ions by thermal diffusion to increase its carrier concentration and thus the conductivity. And successfully improved the photo-dark current ratio from the initial 3.59 to 5.53*103, and the light response also increased from 2.64*10-5 A/W to 0.09 A/W.
In the pN structure, we fabricate ultraviolet photodetectors on p-type silicon substrates with a gallium oxide nanostructure. The built-in electric field improves the device characteristics. We compare the characteristics of the ultraviolet photodetectors fabricated with metal-semiconductor-metal and pN structure through multiple device analysis, the responsivity reaches 5.52A/W, and the response time is improved to 1.1 seconds and 1.9 seconds, and self-power is also found. Thus we confirmed that the pN structure can effectively enhance the electrical performance of the ultraviolet photodetector.
In this thesis, Ga2O3 nanostructure grown by ultrasonic spray pyrolysis deposition method has the advantages of low cost and fast process compared to other deposition methods. And we also optimize its performance by adjusting the parameters of annealing and thermal diffusion doping. Therefore, we believe that the ultrasonic spray pyrolysis deposition method has great advantages and potential in industrial applications.
[1] P. Cheong, K. F. Chang, Y. H. Lai, K. Ho, I. K. Sou, and K. W. Tam, “A Zigbee-baesd wireless sensor network node for ultraviolet detection of flame,” IEEE Transactions on Industrial Electronics., vol. 58, no. 11, pp. 5271-5277, Nov. 2011.
[2] T. E. Barber, J. Castro, S. Hnatyshyn, N. L. Ayala, J. M. E. Storey, and W. P. Partridge, “Analysis of diesel engine exhaust by ultraviolet absorption spectroscopy,” Analytical Letters., vol. 34, no. 14, pp. 2493-2506, Jun. 2007.
[3] P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, and H. Franke, “Water-core waveguide for pollution measurements in the deep ultraviolet,” Applied Optics., vol. 37, no. 21, pp. 4991-4997, Jul. 1998.
[4] W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coating,” IEEE Transactions on Electron Devices., vol. 50, no. 2, pp. 352-358, Feb. 2003
[5] L. O. Bjorn, and R. L. McKenzie. “Attempts to probe the ozone layer and the ultraviolet-B levels of the past, “Ambio, vol. 36, no. 5, pp. 366-371, Jul. 2007.
[6] O. Bulteel, A. Afzalian, and D. Flandre, “Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications,” Analog Integrated Circuits and Signal Processing., vol. 65, no. 3, pp. 399-405, Dec. 2010.
[7] S. H. Liao, “Characteristics improvement of GaN-based UV photodetectors, ”Institute of Microelectronics, National Cheng-Kung University, pp.21-22,2011.
[8] X.Chen, F.F.Ren, S.L.Gu, and J.D. Ye “Review of gallium-oxide-based solar-blind ultraviolet photodetectors” Photonics Research, Vol. 7, No. 4, April 2019.
[9] International Standard, Space Environment (Natural and Artificial)—Process for Determining Solar Irradiances, Technical report ISO21348 (International Standard, 2007).
[10] Lin, C.H.; Liu, C.W. Metal-insulator-semiconductor photodetectors. Sensors 2010, 10, 8797–8826.
[11] Monroy, E.mnes, F.Calle, Wide-bandgap semiconductor ultraviolet photodetectors.semicond. Sci. Technol. 18, R33–R51 , Nov.2003,.
[12] J.D. Hwang and G.S. Lin, “Single-and dual-wavelength photodetectors with MgZnO/ ZnO metal-semiconductor-metal structureby varying the bias voltage,” Nanotechnology., vol. 27, no. 37, Sep. 2016.
[13] J. D. Ye, S. L. Gu, S.M. Zhu, S.M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition,”J. Cryst. Growth 283, 279–285 ,Nov.2005.
[14] N. Hu, D.Y. Jiang, G.Y. Zhang, Z.X. Guo, W. Zhang, X.J. Yang, S. Gao, T. Zheng, Q.C. Liang and J.H. Hou, “Voltage controlled dual-wavelength ZnO/Au/MgZnO UV photodetectors,” Materials Research Bulletin., vol. 103, pp. 294-298, Jul. 2018.
[15] S. Krishna, N. Aggarwal, A. Gundineda, A. Sharma, S. Husale, K.K. Maurya and G. Gupta, “Correlation of donor-acceptor pair emission on the performance of GaN-based UV photodetector,” Materials Science in Semiconductor Processing., vol. 98, pp. 59-64, Aug. 2019.
[16] L.S. Vikas, K.A. Vanaja, P.P. Subha and M.K. Jayaraj, “Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction,” Sensors and Actuators A-Physical., vol. 242, pp. 116-122, May 2016.
[17] S. Han, S.M. Liu, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, X.K. Liu and D.L. Zhu, “High performance solar-blind ultraviolet photo detector based on mixed-phase MgZnO thin film with different interfaces deposited by PLD method,” Journal of Alloys and Compounds., vol. 694, pp. 167-174, Feb. 2017.
[18] R. Bhardwaj, P. Sharma, R. Singh, M. Gupta and S. Mukherjee, “High Responsivity MgxZn1-xO Based Ultraviolet Photodetector Fabricated by Dual Ion Beam Sputtering,” IEEE Sensors Journal., vol. 18, no. 7, pp. 2744-2750, Apr. 2018.
[19] V.S. Rana, J.K. Rajput, T.K. Pathak and L.P. Purohit, “Multilayer MgZnO/ ZnO thin films for UV photodetectors,” Journal of Alloys and Compounds., pp. 724-729, Oct. 2018.
[20] K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 ,Nov.2007.
[21] T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 ,Dec.2015.
[22] S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum- structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 , Apr.2016.
[23] K. Akaiwa and S. Fujita, “Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by sprayassisted mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51,070203 ,Dec.2012.
[24] A.Mondal, M.Yadav, S.Shringi and A.Bag” Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures” Nanotechnology 31 294002 , Nov.2020.
[25] X. Zhang, L. Wang, X.D. Wang, Y. Chen” High-performance β-Ga2O3 thickness dependent solar blind photodetector”Optics Express Vol. 28, No. 3 / 3 ,Feb. 2020
[26] D. Guo, Q. Guo, Z. Chen d, Z.Wu, P. Li, W. Tang “Review of Ga2O3-based optoelectronic devices” Materials Today Physics 100157, Nov.2019.
[27] R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74, 719–722 , Apr.1952.
[28] S.Wang, K.Chen, H.Zhao, C.He, C.Wu, D.Guo, N.Zhao, G.Ungar, J.Shen, X.Chu, P.Li and W.Tang ” β-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection” RSC. Adv. 6064, Sep.2019.
[29] N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido ” Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal” DOI 10.1002/pssc.200674884, Nov.2007.
[30] N.Moser, J.McCandless, A.Crespo, K.Leedy, A.Green, A.Neal, S.Mou, E.Ahmadi, J.Speck, K.Chabak, N.Peixoto and G.Jessen ” Ge-Doped β-Ga2O3 MOSFETs” IEEE Electron Device Letters, Vol. 38, No. 6, Jun. 2017
[31] W.Cui, D.Guo, X.Zhao”Solar-blind photodetector based on Ga2O3 nanowires array film growth from inserted Al2O3 ultrathin interlayers for improving responsivity” RSC Adv 21, 100683, Jun.2016,.
[32] Y.Li, T.Tokizono, M.Liao, M.Zhong, Y.Koide, I.Yamada” Efficient Assembly of Bridged β -Ga2O3 Nanowires for Solar-Blind Photodetection” Advance Functional Material , Nov.2010
[33] D.Guo, Z.Wu, P.Li ”Magnetic anisotropy and deep ultraviolet photoresponse characteristics in Ga2O3:Cr vermicular nanowire thin film nanostructure” RSC Adv., 12894, May.2015.
[34] H.Xiao ”Introduction to Semiconductor Manufacturing Technology” 0618702
[35] H.W.Kim, N.H.Kim “Annealing effects on the properties of Ga2O3 thin films grown onsapphire by the metal organic chemical vapor deposition” Applied Surface Science 230 301–306, Apr.2004.
[36] M. P. LEPSELTER and S. M. SZE ” Silicon Schottky Barrier Diode with Near-Ideal I-V Characteristics ” IEEE, Manuscript, Oct.1967
[37] H.Umezawa, T.Saito, N.Tokuda, M.Ogura, S.G.Ri, H.Yoshikawa, and S. Shikata ” Leakage current analysis of diamond Schottky barrier diode ” Apl 90, 073506, Nov. 2007
[38] K.Konishi, K.Goto, H.Murakami, Y.Kumagai, A.Kuramata, S.Yamakoshi, and Masataka Higashiwaki “1-kV vertical Ga2O3 field-plated Schottky barrier diodes” Apl, 110, 103506 Nov.2017.
[39] D. L. Lile and D. A. Collins “An InP MIS diode ” Appl. Phys. Lett. 28, 554 Dec.1976.
[40] F. Yakuphanoglu, and B. F. Senkal “Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode” J. Phys. Chem. C111, 1840-1846, Feb, 2007.
[41] F.Rena, C.Abernathy, J.DMacKenziea, P.Gilaa, S.Jpeartona, M.Hong, M.A.Marcus, M.J.Schurmanc, A.Gbaca, R.Jshuld ” Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics” Pages 2177-2181, Dec.1998.
[42] S.V.Averine,P.I.Kuznetzov, V.A.Zhitov, N.V.Alkeev “Solar-blind MSM-photodetectors based on AlxGa1−xN/GaN heterostructures grown by MOCVD” Pages 618-624, May.2008.
[43] M. Marso, A. Fox, G. Heidelberger, P. Kordoš, and H. Lüth“Comparison of AlGaN/GaN MSM Varactor Diodes Based on HFET and MOSHFET Layer Structures“IEEE EDL, Vol. 27, NO. 12, Dec.2006
[44] P.R. Berger ” MSM photodiodes” IEEE Xplore, 10.1109/45.489734, Dec.2010.
[45] S.Yang , Q.Chen, S.Ni ,“Enhanced lithium ion storage in dual carbon decoratedb-Ga2O3rendered by improved reaction kinetics” Journal of Alloys and Compounds, Volume 828, Jul.2020.
[46] Y.An, L.Daiz, Y.Wuy, B.Wuy,“Epitaxial growth of b-Ga2O3 thin films on Ga2O3 and Al2O3 substrates by using pulsed laser deposition” Word Scientific Vol. 9, No. 4 1950032, Sep.2019.
[47] H.Li, P.W.Chen, S.H.Yuan, T.M.Huang, S.Zhang, and D.S.Wuu ”Improved Performance of Deep Ultraviolet Photodetector From Sputtered Ga2O3 Films Using Post-Thermal Treatments ” IEEE Photonics Journal Vol. 11, No. 6, Dec.2019.
[48] S.Yang, Q.Chen, S.Ni, Z.X.Dong, M.Zhang, T.L.Xue, L.Yang ” Enhanced lithium ion storage in dual carbon decoratedb-Ga2O3rendered by improved reaction kinetics” Journal of Alloys and Compounds 828 1544842
[49] I.Lopez, E.Nogales, ́B.Mendez and J.Piqueras ” Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga2O3 Nanowires” J. Phys. Chem. C, 117, 3036−3045.Jul.2013.
[50] S.Ohira, N.Suzuki, A.Masahiko, T.Takamasa, S.Kazuo, N.Ma, T.Shishid “Characterization of transparent and conducting Sn-dopedβ-Ga2O3singlecrystal after annealing” Thin Solid Films 516 5763–5767, Jun.2008.
[51] Q.Fenga, F.Li, B.Daia, Z.Ji, W.Xie, T.Xu, X.Lu, X.Tao, J.Zhang, Y.Hao” The properties of gallium oxide thin film grown by pulsed laserdeposition ” Applied Surface Science 359 847–852, Dec.2015.
[52] L.T.Dou, Y.Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Communications., Vol. 5, Nov. 2014.
[53] H.Shen, Y.Yin, K.Tian, K.Baskaran “Growth and characterization of b-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors” Journal of Alloys and Compounds 766 601-608, Nov.2008.
[54] H.Shen, Y.Yin, K.Tian, K.Baskaran “Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown b-Ga2O3 thin films” Journal of Alloys and Compounds 822 153419, Dec.2020.
[55] Y.Peng, Y.Zhang, Z.Chen, D.Guo” Arrays of Solar-Blind Ultraviolet Photodetector Based on -Ga2O3 Epitaxial Thin Films” IEEE PTL, Vol. 30, No. 11, Jun.2018.
[56] J.Yu, Y.Wang, H.Li “Tailoring the solar-blind photoresponse characteristics of β-Ga2O3 epitaxial films through lattice mismatch and crystal orientation J” J. Phys. D: Appl. Phys. 53 24LT01, Dec.2020.
[57] M.M.Fana, Y.J.Lub” Growth and characterization of Sn-doped β-Ga2O3 thin films by chemical vapor deposition using solid powder precursors toward solar-blind ultraviolet photodetection” Applied Surface Science Volume 509, 15 144867, Apr.2020.
[58] X.Zhang, L.Wang” High-performance b-Ga2O3 thickness dependent solar blind photodetector” Optics Express Vol. 28, No. 3, Feb.2020
[59] J.Wang , L.Ye , X.Wang “High transmittance b-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector” Journal of Alloys and Compounds 803 ,Sep.2015.
[60] Z.FENG, L.HUANG, Q.FENG” Influence of annealing atmosphere on the performance of a β-Ga2O3 thin film and photodetector” | OPTICAL MATERIALS EXPRESS 2229 Vol. 8, No. 8, Aug.2018.
[61] T.K.Oanh Vu, D.U.Lee ” The enhancement mechanism of photoresponse depending on oxygen pressure for Ga2O3 photo detectors” Nanotechnology 31 245201 Dec.2020.
[62] S.Wang , H.Sun , Z.Wang”In situ synthesis of monoclinic b-Ga2O3 nanowires on flexible substrate and solar-blind photodetector” Journal of Alloys and Compounds 787 133-139, Nov.2019.
[63] W.Cui, D.Guo, X.Zhao ”Solar-blind photodetector based on Ga2O3 nanowires array film growth from inserted Al2O3 ultrathin interlayers for improving responsivity” RSC Adv, 100683, Jun.2016.
[64] A.Mondal, M.Yadav, S.Shringi and A.Bag” Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures” Nanotechnology 294002, Oct.2020.
[65] S.Wang, K.Chen, H.Zhao, C.He, C.Wu”b-Ga2O3 nanorod arrays with high light-toelectron conversion for solar-blind deep ultraviolet photodetection” RSC Adv, 6064, Sep.2019.
[66] Y.F.Wang, L.Li, H.Wang” An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction”Royal Society of Chemistry Nanoscale, 1406, Apr.2016.
[67] H.Bae, A.Charnas, X.Sun ”Solar-Blind UV Photodetector Based on Atomic Layer-Deposited Cu2O and Nanomembrane β Ga2O3 pn Oxide Heterojunction” ACS Omega, 20756−20761, Apr.2019.
[68] B.Alhalaili, R.Vidu, M.S.Islam ”The Growth of Ga2O3 Nanowires on Silicon for Ultraviolet Photodetector” Sensors, 19(23), 5301, Jan.2019.
[69] D.Guo, Y.Su, H.Shi” Self-Powered Ultraviolet Photodetector with Super high Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction” ACS Nano, 12827−12835, Dec.2018.
[70] G.Kalita, D.Mahyavanshi, P.Desai, A.K.Ranade,M.Kondo, T.Dewa, and M. Tanemura “Photovoltaic Action in Graphene–Ga2O3 Heterojunction with Deep-Ultraviolet Irradiation” Phys. Status Solidi RRL, 1800198, Dec.2018.
[71] J.Yu , Z.Nie, L.Dong “Influence of annealing temperature on structure and photoelectrical performance of b-Ga2O3/4H-SiC heterojunction photodetectors” Journal of Alloys and Compounds 798 458-466, May.2019.
[72] U.Muazzam, P.Chavan, S.Raghavan, R.Muralidharan, and D.Nath “Optical Properties of Mist CVD Grown -Ga2O3” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 32, No. 7, Apr.2020
[73] V.Vasanthia, M.Kottaisamy, V.Ramakrishnan “Near UV excitable warm white light emitting Zn doped γ-Ga2O3 nanoparticles for phosphor-converted white light emitting diode” Ceramics International Volume 45, Pages 2079-2087, Feb.2019,
[74] S.Yusa ,D.Oka and T.Fukumura ” High-κ dielectric ε-Ga2O3 stabilized in a transparent heteroepitaxial structure grown by mist CVD at atmospheric pressure” CrystEngComm, 22, 381–385, Apr.2020.
[75] R.H.Horng, C.Y.Huang, S.L.Ou, Tzu-Kuang Juang, and Po-Liang Liu “Epitaxial Growth of ZnGa2O4: A New, Deep Ultraviolet Semiconductor Candidate” Cryst. Growth Des, 17, 6071-6078, Nov.2017.
校內:2025-07-28公開