簡易檢索 / 詳目顯示

研究生: 林裕順
Lin, Yu-Shan
論文名稱: 採用統一電力品質調節器結合超級電容器組於配電系統電力品質改善
Improvement of Electric Power Quality in Distribution Systems Using a Unified Power Quality Conditioner Integration with a Supercapacitor Bank
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 182
中文關鍵詞: 統一電力品質調節器超級電容器配電系統電力品質再生能源發電系統
外文關鍵詞: Unified power quality conditioner, supercapacitor, distribution systems, power quality, renewable-energy power-generation systems
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於連接到電網的非線性負載快速增長,非線性負載消耗的電流具有較高的諧波含量,會影響負載穩定的運行。電力品質問題也歸因於電力系統中發生的不同故障情況,會導致系統中的電壓驟降或驟昇,從而損壞敏感性負載,因此本論文提出採用統一電力品質調節器結合超級電容器組,以改善配電系統中不良的電力品質。本論文之架構一研究了當市電端或負載端發生不良電力品質時,使用統一電力品質調節器結合超級電容器組之改善效果;架構二係以IEEE四節點之饋線系統為基礎,利用統一電力品質調節器結合超級電容器組來改善配電變壓器繞組為U-V/V-V連接、改變傳輸線R/X比例與負載大小所造成之電壓不平衡;架構三以實際台電配電系統為基礎,採用統一電力品質調節器結合超級電容器組來改善系統電壓不平衡,並觀察對系統中之再生能源發電系統之補償特性。由本論文之模擬結果,驗證所提出統一電力品質調節器結合超級電容器組於改善配電系統電力品質之可行性。

    In recent years, due to the rapid growth of nonlinear loads connected to the power grid, the current consumed by the nonlinear loads has high harmonic content, which will affect the stable operation of the load. Power quality problems are also attributed to different fault conditions in the power system, which can cause voltage sags or swells in the system, thereby damaging sensitive loads, This thesis proposes a unified power quality conditioner integrated with a supercapacitor bank (UPQC-SC) to improve power quality problems such as current harmonics, voltage sags, swells, power harmonics and three-phase unbalance in the power distribution system. The UPQC-SC is first used to improve poor power quality occurred at the grid side or load side of system configuration 1. The UPQC-SC is then applied to system configuration 2 based on the IEEE four-node feeder system to improve the voltage unbalance caused by the UV/VV winding connections of the distribution transformers, changing the transmission line R/X ratio, and the size of the load. The proposed UPQC-SC is finally used to improve the voltage unbalance and characteristics of the renewable-energy power-generation systems of system configuration 3 based on the distribution system of Taiwan Power Company caused by the special winding connections of the distribution transformers. From the simulation results of three system configurations, the proposed UPQC-SC is feasible to improve power quality of distribution systems.

    摘要I SUMMARY II 致謝X 目錄XI 圖目錄XVII 表目錄XXIV 符號說明XXVII 第一章 緒論1 1-1 研究背景與動機1 1-2 相關文獻回顧3 1-3 本論文之貢獻10 1-4 研究內容概述12 第二章 電力品質分析與探討14 2-1 前言14 2-2 電壓驟降14 2-2-1 電壓驟降的成因及影響15 2-2-2 電壓驟降與電壓驟昇之定義以及管制標準17 2-3 電力諧波21 2-3-1 電力諧波成因以及影響21 2-3-2 電力諧波之定義以及管制標準22 2-4三相電壓不平衡29 2-4-1三相電壓不平衡之成因以及影響29 2-4-2 三相電壓不平衡的危害與對設備的影響31 2-4-3 三相電壓不平衡之成因與影響33 2-5 電壓閃爍37 2-5-1電壓閃爍之成因與影響37 2-5-2電壓閃爍之之定義以及管制標準37 第三章 系統架構與數學模型40 3-1 前言40 3-2 系統架構 41 3-3 變壓器之模型47 3-3-1 三台單相變壓器Y-Δ連接之模型47 3-3-2 三台單相變壓器Δ-Δ連接之模型49 3-3-3 二台單相變壓器U-V連接之模型50 3-3-4 二台單相變壓器V-V連接之模型51 3-4 鼠籠式轉子感應電機之模型52 3-5 太陽能陣列之模型54 3-6風渦輪機之模型60 3-7旋角控制系統之模型64 3-8 微渦輪機之模型65 3-8-1 壓縮機之模型67 3-8-2 燃燒室之模型68 3-8-3 渦輪機之模型68 3-9永磁式同步發電機之模型69 3-10 柴油引擎發電機之模型71 3-10-1柴油引擎之模型71 3-10-2同步發電機之模型72 3-10-3激磁系統之模型74 3-11 儲能系統之模型75 第四章 統一電力品質調節器結合超級電容器之設計與應用77 4-1 前言77 4-2主動式電力濾波器77 4-2-1 主動式電力濾波器之優勢78 4-2-2 串聯型主動式電力濾波器基本原理79 4-2-3 並聯型主動式電力濾波器基本原理81 4-2-4 混合型主動式電力濾波器82 4-2-5 統一電力品質調節器84 4-3統一電力品質調節器之架構與控制85 4-4超級電容器之探討與應用89 4-4-1 超級電容器之特性89 4-4-2 超級電容器與電池儲能技術控制91 4-4-3 超級電容器之模型與控制方法92 4-4統一電力品質調節器與超級電容器之參數設計95 第五章 系統模擬分析100 5-1 前言100 5-2 研究系統架構一採用UPQC-SC對電力品質之影響分析101 5-2-1研究系統架構一案例一:市電端發生三相電壓驟降、驟昇和諧波之電力品質分析 101 5-2-2研究系統架構一案例二:市電端發生a相電壓驟降和驟昇之電力品質分析106 5-2-3研究系統架構一案例三:市電端發生短暫電力中斷之UPQC與UPQC-SC的比較 110 5-2-4研究系統架構一案例四:當負載端為非線性負載之電力品質分析 114 5-2-5研究系統架構一案例五:當負載端為三相不平衡負載之電力品質分析116 5-3研究系統架構二之三相電壓不平衡分析118 5-3-1研究系統架構二案例一:主變壓器Tr1繞組為Y-D連接之三相電壓不平衡分析118 5-3-2研究系統架構二案例二:主變壓器Tr1繞組為U-V連接之三相電壓不平衡分析126 5-3-3研究系統架構二案例三:主變壓器Tr1與配電變壓器Tr2繞組皆為U-V連接之負載變動三相電壓不平衡分析133 5-3-4案例四:改變系統傳輸線R/X比例與不平衡負載大小之三相電壓不平衡分析138 5-4研究系統架構三之三相電壓不平衡分析154 第六章 結論與未來研究方向163 6-1 結論163 6-2未來研究方向168 參考文獻170 附錄:系統參數177 作者簡介180

    [1] J. Ye, H. B. Gooi, and F. Wu, “Optimal design and control implementation of UPQC based on variable phase angle control method,” IEEE Trans. Industry Informatics, vol. 14, no. 7, pp. 3109-3123, Jul. 2018.
    [2] Y. Pal and A. Swarup, “A comparative analysis of UPQC-P, UPQC-Q and UPQC-VAmin - a simulation study,” in Proc. 2014 International Conference on Energy and Environment, Beijing, China, Jun. 26-27, 2014, pp. 80-85.
    [3] S. K. Yadav, A. Patel, and H. D. Mather, “Comparison of power losses for different control strategies of UPQC,” in Proc. 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, Feb. 28-Mar. 1, 2020, pp. 1-6.
    [4] S. Devassy and B. Singh, “Design and performance analysis of three-phase solar PV integrated UPQC,” IEEE Trans. Industry Applications, vol. 54, no. 1, pp. 73-81, Jan./Feb. 2018.
    [5] R. K. Patjoshi and K. Mahapatra, “High-performance unified power quality conditioner using command generator tracker-based direct adaptive control strategy,” IET Power Electronics, vol. 9, no. 6, pp. 1267-1278, Dec. 2015.
    [6] C. Gong, R. Shi, Z. Chi, B. Zhang, L. Ma, and R. Jiao, “Research on application of UPQC in electric vehicle charging equipment,” Applied Mechanics and Materials, vol. 734, pp. 852-857, Feb. 2015.
    [7] R. Pavani, T. S. Rao, and K. Mahapatra, “Design & simulation of energy storage unified power quality conditioner (EUPQC) for power quality improvement,” Journal of Engineering Research and Application, vol. 7, no. 5, pp. 29-35, May 2017.
    [8] M. A. Mansor, K. Hasan, M. M. Othman, S. Z. B. M. Noor, and I. Musirin, “Construction and performance investigation of three-phase solar PV and battery energy storage system integrated UPQC,” IEEE Access, vol. 8, pp. 2169-3536, May 2020.
    [9] C. K. Sundarabalan, Y. Puttagunta, and V. Vignesh, “Fuel cell integrated unified power quality conditioner for voltage and current reparation in four-wire distribution grid,” IET Smart Grid, vol. 2, no. 1, pp. 60-68, Mar. 2019.
    [10] X. Xiao, J. Lu, C. Yuan, and Y. Yang, “A 10 kV 4 MVA unified power quality conditioner based on modular multilevel inverter,” in Proc. 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, May 12-15, 2013, pp. 1352-1357.
    [11] Y. Yang, X. Xiao, S. Guo, Y. Gao, C. Yuan, and W. Yang, “Energy storage characteristic analysis of voltage sags compensation for UPQC based on MMC for medium voltage distribution system,” Energies, vol. 11, no. 4, pp. 1-17, Apr. 2018.
    [12] T. Koroglu, M. U. Cuma, A. Tan, M. Inci, T. Demirdelen, K. C. Bayindir, and M. Tumay, “Performance evaluation of a new hybrid unified power quality conditioner (HUPQC),” in Proc. 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, Jun. 22-25, 2015, pp. 1-6.
    [13] N. Amaro and J. M. Pina, “Improved operation of an UPQC by addition of a superconducting magnetic energy storage system,” in Proc. 2015 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, Portugal, Jun. 24-26, 2015, pp. 82-86.
    [14] Y. Yang, X. Xiao, S. Guo, Y. Gao, C. Yuan, and W. Yang, “Control of UPQC based on steady state linear Kalman filter for compensation of power quality problems,” Chinese Journal of Electrical Engineering, vol. 6, no. 2, pp. 52-65, Jun. 2020.
    [15] D. Somayajula and M. L. Crow, “An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 616-624, Apr. 2015.
    [16] Amirullah, Adiananda, O. Penangsang, and A. Soeprijanto, “A dual UPQC to mitigate sag/swell, interruption, and harmonics on three phase low voltage distribution system,” in Proc. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, Oct. 3-4, 2020, pp. 1-6.
    [17] J. Kotturu and P. Agarwal, “Comparative Performance Analysis of UPQC and open UPQC,” in Proc. 2015 Annual IEEE India Conference (INDICON), New Delhi, India, Dec. 17-20, 2015, pp. 1-6.
    [18] M. Hasan, A. Q. Ansari, and B. Singh, “Parameters estimation of a series VSC and shunt VSC to design a unified power quality conditioner (UPQC),” in Proc. 2015 39th National Systems Conference (NSC), Greater Noida, India, Dec. 14-16, 2015, pp. 1-6.
    [19] X. Luo, J. Wang, M. Dooner, and J. Clarke, “An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid,” Applied Energy, vol. 137, no. 1, pp. 511-536, Jan. 2015.
    [20] P. Prasad, M. K. Jainuddin, Y. Rambabu, and V. K. R. M. Rao, “Unified power quality conditioner (UPQC) with storage device for power quality problems,” International Journal of Engineering and Science, vol. 3, no. 8, pp. 19-26, Sep. 2013.
    [21] 江榮城,電力品質實務(一),台北市:全華科技圖書公司,民國八十九年五月。
    [22] 電壓暫降產生的原因。 [Online]. Available: https://kknews.cc/z
    h-tw/tech/kq24lp.html, retrieved date: Feb. 2, 2021.
    [23] 李芸芬,南科園區鄰近線路遭雷擊之電壓驟降分析,崑山科技大學電機工程系碩士論文,民國九十四年六月。
    [24] IEEE Std 1159-2019, IEEE Recommended Practice for Monitoring Electric Power Quality.
    [25] 辜志承、沈混源、廖文彬、張源吉、蘇文,行政院國家科學委員會專題研究計畫:子計畫六:配電系統保護協調技術升級與效益研究(2/2),執行期間民國92年8月1日至93年7月31日。
    [26] 蔡明堂、林家宏、曹銘介、朱國瑞,機率神經網路應用於特定諧波偵測之研究,台電工程月刊,第676卷,第43-57頁, 民國93年12月。
    [27] 廖柏翰,採用動態電壓恢復器結合超級電容器於配電系統電力品質之改善,國立成功大學電機工程學系碩士論文,民國一百零九年七月。
    [28] 王耀諄、魏炫浚、李江瀚、林裕閔、周恭諒,行政院國家科學委員會專題研究計畫:感應發電機在不良操作條件下的電力品質分析(2/2),執行期間民國95年8月1日至96年7月31日。
    [29] 王耀諄,電力品質,第二版,台北市:高立圖書公司,民國九十八年八月。
    [30] 劉威盛,配電型靜態同步補償器應用於變壓器U-V/V-V連接之電壓不平衡改善,國立成功大學電機工程學系碩士論文,民國一百零五年七月。
    [31] 陳正一、黃子維、陳淑郡、藍建凱,「高效能並聯主動式濾波器參考補償電流控制策略於電力品質改善之研究(第3年)」,執行期間民國106年8月1日起至民國107年7月31日止,計畫編號:MOST 104-2628-E-008-004-MY3。
    [32] 廖清榮,「赴美參加電力品質訓練課程與風力發電會議出國報告,台灣電力公司」,執行期間民國95年8月1日至96年7月31日。
    [33] 辜志承、黃少俞, “風力發電機併網對配電系統電壓閃爍之影響” 中華民國電驛協會會刊24 期,民國90年。
    [34] 許毓仁,電壓閃爍之分析與預測,國立中山大學電機工程學系博士論文,民國一百零一年七月。
    [35] T.-H. Chen, J.-D. Chang, and Y.-L. Chang, “Models of grounded mid-tap open-wye and open-delta connected transformers for rigorous analysis of a distribution system,” IEE Proc. Generation, Transmission, and Distribution, vol. 143, no. 1, pp. 82-88, Jan. 1996.
    [36] 盧修宇,採用多階靜態同步補償器於配電系統電壓不平衡改善之分析,國立成功大學電機工程學系碩士論文,民國一百零六年七月。
    [37] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 3rd ed., New York: John Wiley & Sons, 2013.
    [38] U. S. Patel, M. D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary Research (IJDACR), vol. 2, no. 2, pp. 1-8, Sep. 2013.
    [39] S. J. Chapman, Electric Machinery Fundamentals, 4th ed., New York: McGraw-Hill, 2004.
    [40] S. Heier, Grid Integration of Wind Energy Conversion Systems, New York: John Wiley & Sons, 1998.
    [41] 吳登耀,多階串級H橋式靜態同步補償器應用於配電系統之三相電壓不平衡改善,國立成功大學電機工程學系碩士論文,民國一百零七年七月。
    [42] L. Wang and G.-Z. Zheng, “Analysis of a microturbine generator system connected to a distribution system through power-electronics converters,” IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 159-166, Apr. 2011.
    [43] M.-J. Chen, Y.-C. Wu, and G.-T Liu, “Dynamic behavior a distributed incinerator power system under output power variation,” International Journal of Numerical Modelling Electronic Networks, Devices Fields, vol. 28, no. 1, pp. 65-77, Jan./Feb. 2015.
    [44] O. Tremblay and L.-A. Dessaint, “Experimental validation of a battery dynamic model for EV applications,” World Electric Journal, vol. 3, no. 1, pp. 289-298, May 2009.
    [45] T. Trapp, C. C. Chryssostomidis, and G. Karniadakis, “A design for the interface between a battery storage and charging unit and a medium voltage DC bus, as part of an integrated propulsion system in the all electric ship,” Grand Challenges in Modeling and Simulation (GCMS), Hague, Netherlands, Jun. 27-30, 2011, pp. 6-11.
    [46] 薛儒鴻,負載端整合型電力品質調節器之設計及實現,國立台南大學電機工程學系碩士論文,民國一百年七月。
    [47] A. K. Shah and N. Vaghela, “Shunt active power filter for power quality improvement in distribution systems,” International Journal of Engineering Development and Research (IJEDR), vol. 1, no. 2, pp. 23-27, May 2014.
    [48] 陳俊丞,三相主動式電力濾波器在電力品質改善之研究,國立雲林科技大學電機工程學系碩士論文,民國九十六年七月。
    [49] S. S. Dheeban and N. B. M. Selvan, “PV integrated UPQC for sensitive Load,” in Proc. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, Feb. 24-25, 2020, pp. 1-7.
    [50] G. Sivasankar and V. S. Kumar, “Supercapacitor energy storage based-UPQC to enhance ride-through capability of wind turbine generators,” Turkish Journal of Electrical Engineering & Computer Sciences, no. 23, pp. 1867-1881, Apr. 2014.

    無法下載圖示 校內:2026-08-02公開
    校外:2026-08-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE