簡易檢索 / 詳目顯示

研究生: 蔡涵宇
Tsai, Han-Yu
論文名稱: 適用於MB-OFDM超寬頻系統Group-1和Group-3子頻帶之頻率合成器設計
Frequency Synthesizer Design for MB-OFDM UWB System with Group-1 and Group-3 Sub-bands
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 超寬頻鎖相迴路頻率合成器
外文關鍵詞: Ultra Wide Band, Phase Locked Loop, Frequency Synthesizer
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頻率合成器在無線通訊系統領域是相當重要的。由於現今的通訊系統規格不只一種,因此選用不同的規格對於輸出頻率的需求也會有所不同。本論文將選擇MB-OFDM超寬頻系統作為設計考量,針對其Group-1和Group-3的子頻帶的需求,總共有六個頻率輸出。
    對於MB-OFDM超寬頻系統頻率合成器的頻率規劃不同會影響其電路面積與功耗,因此盡量減少子電路個數來達成設計目標是其重心。本論文製程部分使用台積電0.18-μm 1P6M CMOS 製程,其電路架構是由一個鎖相迴路為主,配合兩個多工器、兩個除頻器和兩個混頻器所組成。鎖相迴路部分的操作頻率為6336MHz,輸入參考頻率為264MHz,且為四相位輸出,故選用四相位壓控振盪器。在混頻器的部分主要是使用單側邊頻帶混頻器,設計兩種負載模式,其中利用電阻為負載的混頻器混頻出2640MHz,利用共振腔為負載的混頻出最後的7656MHz、7128MHz、6600MHz、4488MHz、3960MHz和3432MHz六個頻率。
    整個頻率合成器系統的鎖相迴路對於其中的低通濾波器設計,使用的是二階迴路濾波器。在過去鎖相迴路的晶片實現大部分的濾波器都會使用外接的方式來完成,此方法可以降低晶片電路失敗的問題,但因為外接線與元件的影響,會產生各種額外的雜訊。因此本論文將對二階迴路濾波器做晶片的整合實現,除了可以降低雜訊的干擾,對於電荷幫浦的電流需求也較小,可降低其功率消耗。在電路架構上考量到頻率合成器的晶片面積,將使用電容放大技巧的二階迴路濾波器,除了可以減小實際使用電容的數值,也可以降低壓控振盪器控制電壓的抖動問題。
    在晶片實現部分以鎖相迴路為主,電路架構由相頻偵測器、電荷幫浦、低通濾波器、壓控振盪器和四個除頻器所組成。主要電路包括壓控振盪器和兩個電流模式邏輯除二電路的電壓為1.5V,其他電壓則為1.8V。其中電荷幫浦使用rail-to-rail的放大器處理電流不匹配問題;低通濾波器使用電容放大的技巧來節省晶片的面積;且為了配合單側邊頻帶混頻器使用真實單相時脈四相位除三電路。整體的晶片面積為1.3 mm × 1.3 mm。在鎖定時四相位壓控振盪器的輸出功率為-7.63dBm,相位雜訊量測在100kHz位移頻率約為-86.07dBc/Hz、1 MHz位移頻率下約為-102.23dBc/Hz、10MHz位移頻率下約為-127.31dBc/Hz。其消耗功率為32mW,且輸入參考訊號所產生於壓控振盪器頻譜上的spur大小約為-49.4 dBm。
    頻率合成器佈局後的功率消耗模擬結果可分為幾個部分:電阻為負載和共振腔為負載的兩個單側邊頻帶混頻器總消耗功率約為17.04mW,二選一和三選一的兩個多工器消耗功率約為6.92mW,整體之消耗功率為65.08mW,電壓使用1.5V。佈局的面積約為1.2 mm × 1.15 mm,此數據為核心電路部分將不包含PAD的面積。

    The frequency synthesizer is an important role of the transceivers in the wireless communication systems. Today, various kinds of standard specifications are proposed for the communication systems. A different specification would lead to different frequency synthesizer's design. This thesis takes into account the frequency synthesizer design for the multi-band orthogonal-frequency-division-multiplexing (MB-OFDM) ultra-wideband (UWB) system, especially for the needs of Group-1 and the Group-3 sub-bands, in which there are six frequency outputs.
    The different designs of frequency synthesizers will lead to different circuit area and power consumption. Therefore, how to reduce the complexity of the electric circuit integration while achieving the same function is the design key point. In this thesis, the frequency synthesizer was fabricated in TSMC’s 0.18m 1P6M CMOS process. Our proposed frequency synthesizer is composed of one phase-locked loop (PLL), two multiplexers, two dividers, and two single-sideband (SSB) mixers. The PLL is operated at 6336 MHz with a 264 MHz reference input. The PLL has to provides quadrature outputs for driving the SSB mixers, so a quadrature voltage-controlled oscillator (QVCO) is necessary. There are two types of output loads for the SSB mixers; one is a resistive type for the operation frequency 2640 MHz; another is an LC-resonant type for those operation frequencies are 7656, 7128, 6600, 4488, 3960, and 3432 MHz.
    The PLL in the proposed UWB frequency synthesizer uses a second-order low pass filter (LPF). In the past, PLLs may utilize off-chip LPFs for the design flexibility consideration. This way can help to reduce the chip fail problem, but it will possibly cause more noises in the PLL. In this thesis, we use the on-chip LPF design that can have lower noise and less pump current level. Therefore, the power consumption of the charge pump circuit can be reduced. To consider the area consumption of the whole frequency synthesizer, the use with capacitive multiplication technique on the LPF can make the capacitor area small and the jitter performance of the QVCO improved. The capacitive multiplication technique is implemented with the help of an OP amplifier.
    The primary contribution of this thesis is the integration of a PLL, which consists of a phase frequency detector, a charge pump, an on-chip low pass filter, a QVCO and four dividers. The charge pump is implemented by a rail-to-rail error amplifier to overcome the process variation and the current matching problem. The low pass filter use capacitive multiplication technique with a smaller capacitance value and thus the chip area can be reduced. Considering the cooperative use of the SSB mixers in our proposed frequency synthesizer, a novel quadrature TSPC divide-by-3 circuit has been proposed. The total chip area is 1.3 mm × 1.3 mm. The output power is -7.63 dBm. The measured average phase noises of the PLL is -86.07 dBc/Hz at 100kHz offset from the center frequency. That of -102.23 dBc/Hz and -127.31 dBc/Hz at 1 MHz and 10 MHz offset frequencies, respectively, from the center frequency can be obtained. The power consumption is 32mW and the reference spur is -49.4 dBm.
    The post-layout simulation has been done for our proposed frequency synthesizer. The two SSB mixers respectively with an RC load and an LC load totally consumes the power consumption of 17.04 mW. The two multiplexers respectively with the bi-ways and tri-ways in power consumption are 6.92 mW. The total power consumption is 65.08mW and the vdd is 1.5V. The layout area is 1.2 mm × 1.15 mm without PAD.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 3 第二章 鎖相迴路設計 4 2.1 鎖相迴路簡介 4 2.1.1 架構介紹 4 2.1.2 線性模型與雜訊分析 5 2.2 相頻偵測器 (Phase Frequency Detector, PFD) 6 2.3 電荷幫浦 (Charge Pump, CP) 12 2.4 低通迴路濾波器(Low Pass Filter, LPF) 18 2.5 四相位輸出壓控振盪器(Quadrature Voltage Control Oscillator, QVCO) 23 2.6 除頻器 29 2.6.1 電流模式邏輯除二電路 (Current Mode Logic, CML, divide-by-2) 30 2.6.2 真實單相時脈四相位除三電路 (True Single Phase Clock, TSPC, divide-by-3) 31 2.6.3 真實單相時脈除二電路 (True Single Phase Clock, TSPC, divide-by-2) 33 第三章 頻率合成器設計 34 3.1 頻率合成器簡介 34 3.1.1 架構簡介 34 3.1.2 電路設計 35 3.2 多工器(Multiplexer, MUX) 36 3.3 單側邊頻帶混頻器(Single Side Band Mixer) 40 3.4 頻率合成器系統模擬 41 第四章 模擬與量測結果 46 4.1 鎖相迴路系統模擬 46 4.2 鎖相迴路系統量測 53 4.2.1 QVCO量測結果 54 4.2.2 除頻器量測結果 56 4.2.3 鎖相迴路量測結果 58 第五章 結論與未來規劃 63 5.1 結論 63 5.2 未來規劃 63 參考文獻 64

    [1]C. Mishra, A. Valdes-Garcia, F. Bahmani, et al., “Frequency Planning and Synthesizer Architectures for Multiband OFDM UWB Radios,” IEEE Transactions on Microwave Theory and Techniques, vol.53, no. 12, pp.3744-3756, March 2005.
    [2]Jun-Yuan Wang, “A PLL Circuit with Self-Frequency-Calibration,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. Thesis for Master of Science, July, 2006.
    [3]C. T. Charles and D. J. Allstot, “A buffered charge pump with zero charge sharing,” in IEEE International Symposium on Circuits and Systems, pp. 2633-2636, May. 2008.
    [4]N. HOU and Z. LI, “Design of High Performance CMOS Charge Pump for Phase Looked Loops synthesizer,” in Asia-Pacific Conference on Communications, pp. 209-212, 2009.
    [5]W. RHEE, “Design of high performance CMOS charge pump in phase locked loop,"in IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 545-548, 1999.
    [6]J.-S. Lee, M.-S. Keel, S.-I. Lim and S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loops,"Electronics Letters, vol. 36, no. 23, pp1907-1908, Nov. 2000.
    [7]Z.-D. Huang, F.-W. Kuo, W.-C. Wang and C.-Y. Wu, “A 1.5V 3~10 GHz 0.18um CMOS Frequency Synthesizer for MB-OFDM UWB applications, " in 2008 IEEE MTT-S International Microwave Symposium (IMS 2008), pp. 229-232, Jun. 2008.
    [8]Y. Sun, L. Sick, et al., “Design of a High Performance Charge Pump Circuit for Low Voltage Phase-locked loops,” IEEE 2007 International Symposium on Integrated Circuits (ISIC), pp. 271-274, Sep. 2007
    [9]X. Hong, L. Zhiqun, W. Zhigong, et al., “ Charge Pump Design for PLL Synthesizer,” Chinese Journal of Semiconductors, Vol. 28, no. 12, pp. 116-120, Dec. 2007.
    [10]G.-Y. Tak, S.-B. Hyum, B. G. Choi and S. S. Park, “A 6.3-9 GHz CMOS Fast settling PLL for MB-OFDM UWB Applications," IEEE J. Solid-State circuits, vol. 40, no. 8, pp. 1671-1679, Aug. 2005.
    [11]劉深淵,楊清淵, “鎖相迴路," 滄海書局, 2006.
    [12]H. Gao, Z.-Q. Lu, F.-C. Lai, “Design of Low-Phase-Noise Low-Phase- Error CMOS Quadrature VCO, " in Int. Conf. on Microwave and Millimeter Wave Technology (ICMMT ’07), pp. 1-4, Apr. 2007.
    [13]Yu-Ting Chen, “Multi-standard/Multi-band Voltage Controlled Oscillator Design with Novel Switchable Inductor,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. Thesis for Master of Science, July, 2009.
    [14]P.-Y. Deng and J.-F. Kiang, “A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors, " IEEE Transactions on Circuits and Systems, vol. 56, no. 2, pp. 320-326, Feb.2009.
    [15]J.- M. C. Wong, V.- S. L. Cheung, and H.-C. Luong,“A 1-V 2.5-mW 5.2-GHz Frequency Divider in a 0.35-_m CMOS Process, "IEEE Journal of Solid State Circuits, vol. 38, no. 10, pp. 1643-1648, Oct. 2003.
    [16]P. Heydari and R. Mohanavelu,“Design of Ultrahigh-Speed Low-Voltage CMOS CML Buffers and Latches, "IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp. 1081-1093, Oct. 2004
    [17]R. Nonis, E. Palumbo, P. Palestri and L. Selmi,“A Design Methodology for MOS Current-Mode Logic Frequency Dividers, "IEEE Transactions on Circuits and Systems, vol. 54, no. 2, pp. 245-254, Feb. 2007.
    [18]C.-C. Lin and C. K. Wang, “A regenerative semi-dynamic frequency divider for Mode-1 MB-OFDM UWB hopping carrier generation,” in IEEE International Solid-State Circuit Conference (ISSCC 2005), pp.206-207, Feb. 2005.
    [19]C.-F. Liang, S.-I. Liu, Y.-H. Chen, T.-Y. Yang, and G.-K. Ma, “A 14-band frequency synthesizer for MB-OFDM UWB application,” IEEE International Solid-State Circuits Conference (ISSCC 2006), pp.428-437, Feb. 2006.
    [20]B. Sun, “Divide-by-three circuit,” US patent, patent no. 6,389,095. May 14, 2002.
    [21]R. Magoon and A. Molnar, “RF Local Oscillator Path for GSM Direct Conversion Transceiver with True 50% Duty Cycle Divide by Three and Active Third Harmonic Cancellation,” 2002 IEEE Radio Frequency Integrated Circuits Symposium (RFIC2002), pp. 23-26, Jun. 2002.
    [22]Shih-Han Ye, “A Phase Locked Loop for MB-OFDM UWB Frequency Synthesizer Application,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. Thesis for Master of Science, July, 2010
    [23]S. Pellerano, S. Levantino, C. Samori, et al, “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic-frequency divider, ” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 378-383, Feb 2004.
    [24]Chih-Wei Chang and Yi-Jan Emery Chen, “A CMOS True Single-Phase-Clock Divider With Differential Outputs, ” IEEE Microwave and Wireless Components Letters, vol.19, no. 12, pp. 813-815, Dec. 2009
    [25]H.-S. Chae, et. al, “A Fast Hopping Frequency Synthesizer for UWB System in a CMOS Technology,” in 2nd International Symposium on Wireless Communication Systems, pp. 370-374, Sep. 2005.
    [26]H. Zhang, G. Chen, “A Monolithic Fast-Hopping Frequency Synthesizer for MB-OFDM UWB,"in Asia-Pacific Microwave Conference (APMC 2005), pp. 4, Dec. 2005.
    [27]J.- S Park, Y.-G. Pu, Y.-S. Kim, C. Nam and K.-Y. Lee, “A Design of Sub-Band Generator for MB-OFDM UWB Application in 0.13 μm RF CMOS process,” in IEEE Asia-Pacific Conference on Circuits and Systems, pp. 1712-1715, Dec. 2008.
    [28]J.-K. Kim, S.K. Jung, J.-H, et al, “A Design of the Frequency Synthesizer for UWB Application in 0.13 μm RF CMOS process,” in IEEE International Workshop on Radio-Frequency Integration Technology (RFIT), pp. 318-321, Dec. 2007.
    [29]J. Lee, “A 3-to-8 GHz Fast-Hopping Frequency Synthesizer in 0.18-um CMOS Technology,"IEEE J. Solid-State Circuits, vol.41, no.3, pp. 566-573, Mar. 2006.
    [30]J. Harvey and R. Harjani, “ An Integrated Quadrature Mixer with Improved Image Rejection at Low Voltage,” in IEEE 4th Int. Conf. on VLSI Design, pp. 269-273, Sep. 2001.
    [31]J. Park, C.-H. Lee, B.-S. Kim and J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
    [32]S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer," Electronics Letters, vol. 36, no. 8, pp. 696-697, Apr. 2000.
    [33]H.-S. Chae, E.-C. Park, et al,“A Fast Hopping Frequency Synthesizer for UWB Systems in a CMOS Technology,” in 2nd International Symposium on Wireless Communication Systems, pp. 370-374, Sep. 2005.
    [34]Z.-D. Huang, F.-W. Kuo, W.-C. Wang and C.-Y. Wu, “A 1.5V 3~10 GHz 0.18um CMOS Frequency Synthesizer for MB-OFDM UWB applications,” in IEEE MTT-S International Microwave Symposium (IMS 2008), pp. 229-232, Jun. 2008.

    下載圖示 校內:2012-08-17公開
    校外:2012-08-17公開
    QR CODE