簡易檢索 / 詳目顯示

研究生: 簡鍾凱
Jian, Zhong-Kai
論文名稱: 應用柴比雪夫配置法求解岩盤滲水引發崩塌運動之研究
Application of a Chebyshev Collocation Method to Solve the Movement of Landslide Triggered by Bedrock Exfiltration
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 岩盤滲水出滲分佈孔隙水壓柴比雪夫配置法崩塌土體
外文關鍵詞: bedrock groundwater exfiltration, Chebyshev collocation method, Darcy’s law, Newton’s equation, pore pressure
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水從岩盤出滲會升高其上層土體的孔隙水壓及降低土體的抗剪阻力,甚至引發崩塌,因此岩盤滲水是引發崩塌的重要因子之一。本研究探討岩盤滲水引發土體崩塌及崩塌後的運動特性。參照Iverson(2005)的做法,以牛頓第二運動定律建立無限邊坡崩塌土體之運動控制方程式,並以擴散方程式描述孔隙水壓的傳遞行為。有別於Iverson(2005)使用有限差分法求解前述方程式,本研究以柴比雪夫配置法將土體運動之控制方程式及孔隙水壓擴散方程式轉化為一階常微分方程,並搭配使用四階Runge-Kutta方法求解此一階常微分方程。
    Iverson(2005)只討論均勻岩盤滲水對土體崩塌及崩塌運動的影響,本研究分析三種非均勻岩盤滲水率對土體崩塌及崩塌運動特性之影響。岩盤滲水率分布包括前峰型、中峰型及後峰型等三種非均勻分佈。計算結果顯示岩盤滲水率分佈的差異會影響土體崩塌時間點及崩塌後運動特性。運動控制方程式的抗剪阻力項受到孔隙水壓影響,因此崩塌運動的起始時間及特性都受到孔隙水壓的影響。對於前峰型岩盤滲水率分佈者,因為岩盤滲水前期出滲速率快,孔隙水壓力累積也快,因此崩塌的時間點較早;崩塌發生後的運動特性同樣受制於孔隙水壓,對於後峰型岩盤滲水率分佈者,岩盤滲水在前期出滲速率較低,雖然前期孔隙水壓累積較慢,但後期土體崩塌開始之後,岩盤滲水率較大,滑動阻力較小,崩塌土體移動速度較快。本研究分析比較前峰型、中峰型及後峰型等三種岩盤滲水率分佈對崩塌發生時間及滑動速度的影響。

    A mathematical model clarifies how diverse styles and rates of landslide motion can result from regulation of Coulomb friction by dilation of watersaturated basal shear zones. Evolution of orbits in the phase plane of landslide velocity and basal dilatancy-induced pore pressure with impact of bedrock groundwater exfiltration was studied in the framework of the models of Iverson and Schaeffer(2008) and Iverson(2005).In these models, the velocity of block of soil sliding down an inclined plane is governed by Newton’s equation of motion, while the excess pore pressure, induced by dilatation of basal shear zone, is described by diffusion equation and coupled with the landslide velocity through a basal boundary condition that is expressed in the form of Darcy’s law. In this study, those governing equations are transformed to a system of first-order time ordinary differential equations by using the Chebyshev collocation method. Then a fourth-order Runge-Kutta scheme was employed to solve this initial-value problem to obtain the evolution of the phase orbits. we follow D’Odorico’s method (2005) to build three distribution type of nonuniform exfiltration rates to simulation how influence is the dependence on the hyetograph structure. Numerical simulations result show different case of distribution type of bedrock exfiltration rates that can produce difference trigger time and style of landslide motion. Case of ahead peak exfiltration distribution type can faster trigger landslide than another case, and postponed peak distribution type of bedrock exfiltration rates trigger time of landslide is later, but it can faster arrived at the same specified sidtance.

    中文摘要 I Abstract II 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XI 符號說明 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文架構 2 第二章 文獻回顧 3 2.1 崩塌的定義 3 2.2 水流滲透誘發的崩塌 4 第三章 控制方程式 15 3.1 基礎理論 15 3.2 運動控制方程式 21 3.3 擴散控制方程式 24 3.3.1 滲透孔隙水壓擴散方程式 24 3.3.2 超額孔隙水壓擴散方程式 25 3.4 無因次化控制方程式 28 第四章 數值計算方法 31 4.1 數值計算流程 31 4.2 滲透孔隙水壓擴散方程式的解 32 4.3 超額孔隙水壓擴散方程式數值解 34 4.3.1 配置法(Collocation Method) 34 4.3.2 柴比雪夫多項式 35 4.4 耦合控制方程式之系統矩陣 38 第五章 地下水出滲分析 50 5.1 穩定之岩盤出滲速率 50 5.2 非穩定之岩盤出滲速率 56 5.2.1 岩盤滲水出滲速率分佈型態建立 56 5.2.2 岩盤滲水出滲速率之時間間距 60 5.2.3 地下水出滲速率分佈型態差異 69 第六章 結論與建議 73 6.1 結論 73 6.2 建議 74 參考文獻 75

    1. 盧琇真(2004), 雨型與入滲對運動波漫地流之影響分析研究, 國立交通大學土木工程研究所碩士論文。
    2. 詹錢登(2000),土石流概論,台北,科技圖書
    3. 葉信富,陳進發,李振誥(2005), 降雨入滲對坡地穩定影響之研究, 中華水土保持學報, 36(2): 145-158.
    4. 陳弘恩(2005), 降雨因發坡地淺崩塌模式之建立與探討, 國立交通大學土木工程研究所碩士論文。
    5. 張光宇(2010), 西方邊界流模擬:切比雪夫排列法與沉浸邊界法整合, 國立臺灣大學大氣科學研究所碩士論文。
    6. 張永潔(2009), 運用在分解定義域之淺水方程式模型的切比雪夫排列法, 國立交通大學應用數學研究所碩士論文。
    7. 柯傑夫(2010), 鐵立庫崩塌地,北臺灣:以試驗判斷岩盤湧水扮演的角色,國立臺灣大學土木工程研究所碩士論文。
    8. 柯傑夫,卡艾瑋, 萊威廉,林伯勳,冀樹勇 (2011), 岩盤滲水對於室內試驗模擬與鐵立庫崩塌形狀及地形演變之影響, 2011年中華水土保持學會年會及學術研討會, 中興大學。
    9. 林孟郁(1996), 波譜法應用於二維波浪模擬之探討, 國立臺灣大學土木工程研究所碩士論文。
    10. 張榮哲(1999), 柴必雪夫多項式應用於波譜元素法, 國立臺灣大學土木工程研究所碩士論文。
    11. 陳昭明(2004), 壓電微扭轉致動器與感測器之製程與分析,逢甲大學機械工程研究所碩士論文。
    12. 陳冠翰(2011), 滲流誘發斜坡土體滑動特性之試驗,國立中興大學水土保持學系所碩士論文。
    13. 陳駿逸(2004), 計算偏微分方程之頻譜配點法, 東海大學應用數學研究所碩士論文。
    14. Beven, K., and P. Germann (1982) , Macropores and water flow in soils, Water Resour. Res.,18, 1311–1325
    15. Bolton, M. D. (1986), The strength and dilatancy of sands, Geotechnique, 36, 65–78.
    16. Brammer, D. D. and J. McDonnell (1996) , An evolving perceptual model of hillslope flow at the Miami catchment, Adv. Hillslope Processes, 1, 35–60.
    17. Bronnimann, C., Stahli, M., Schneiderm, P., Seward, L., Springman,S.M. (2013) , Bedrock exfiltration as a triggering mechanism for shallow landslides. Water Resour. Res , VOL.49, 5155–5167
    18. Benjamin, J. R., and C. A. Cornell (1970), Probability, Statistics, and
    Decision for Civil Engineers, McGraw-Hill, New York.
    19. Carslaw, H.S., Jaeger, J.C. (1959),. Conduction of Heat in Solids. Oxford Univ. Press, New York.
    20. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., (1987). Spectral Methods in Fluid Mechanics. Springer, Berlin.
    21. Conte E., Troncone A. (2012) , A method for the analysis of soil slips triggered by rainfall. Géotechnique , Vol. 62, pp. 187-192
    22. Cruden, D. M., and D. J. Varnes (1996) , Landslide types and processes, in Landslides Investigation and Mitigation, edited by A. K. Turner and R. L. Schuster, Academy of Sci.,pp. 36–75, Natl. Washington, D. C.
    23. D’Odorico., P. (2005),Potential for landsliding: Dependence on hyetograph characteristics., J. Geophys. Res ,VOL. 110
    24. Gear, C.W., (1971). Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, N.J.
    25. Genevois, R., Ghirotti, M., (2005). The 1963 Vaiont landslide. G. Geol. Appl. 1, 41–52.
    26. Iverson, R. M., (2000). Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897– 1910.
    27. Iverson, R. M., (2005). Regulation of landslide motion by dilatancy and pore pressure feedback, J. Geophys. Res., 110
    28. Kosugi, K., S. Katsura, M. Katsuyama, and T. Mizuyama (2006), Water flow processes in weathered granitic bedrock and their effects on runoff generation in a small headwater catchment, Water Resour. Res.,VOL. 42
    29. Onda, Y., M. Tsujimura, and H. Tabuchi (2004), The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan, Hydrol. Processes, VOL.18,637-650
    30. Park, H.M., Ryu, D.H.,(2001). Rayleigh-Benard convection of viscoelastic fluids in finite domains. J. Non-Newtonian Fluid Mech. 98(2-3), 169–184.
    31. Pradel, D. and G. Raad (1993), “Effect of permeability on surficial stability of homogeneous slopes,” J. Geotech. Eng., 119: 315-332.
    32. S.S.Antman.,J.E.Marsden.,L.Sirovich.(2000), Spectral Methods for Incompressible Viscous Flow(1st ed.), New York:Springer
    33. Schaeffer,D. G. and Iverson, R. M.(2008), Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM J. APPL. MATH., Vol. 69, 769-786
    34. Tan S. B., T. L. Lim, S. L. Tan and K. S.Yang(1987), “Landslide problems and their control in Singapore,” In: 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, 1-25, 1-36.
    35. Tsai, T. L., and Yang, J. C. (2006), Modeling of rainfall‐triggered shallow landslide, Environ. Geol., 50(4), 525–534.
    36. Wang, G., and K. Sassa (2003), Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content, Eng. Geol., 69, 109– 125.
    37. Wilson, C. J.; Dietrich, W. E., (1987): The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS Publication (165): 49-59.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE