| 研究生: |
江綺惠 Chiang, Chi-Hui |
|---|---|
| 論文名稱: |
企業資源能耐之分配策略分析 Strategical Allocation for Corporates’ Resources and Capabilities |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 資源能耐 、平衡計分卡 、模糊理論 、契約理論 、資料包絡法 |
| 外文關鍵詞: | Resource Capabilities, Balanced Scorecard (BSC), Contract Theory, Fuzzy Theory, Data Envelopment Analysis (DEA) |
| 相關次數: | 點閱:115 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資訊與技術的快速發展帶動全球各產業的進步,同時形成激烈的競爭環境,如何在這樣的環境有效的分配內部資源與能耐以求脫穎而出為當今企業的重要課題。本研究的主要目的為建立一套協助企業制定資源能耐分配策略之模型,將企業能耐轉換為常用的四項平衡計分卡管理指標,再依據契約理論分別建立此四項指標的損益效用函數,其中的損益參考點以模糊語意函數呈現且於訪談過程中求得,並加入需求門檻限制式以建構能耐配置契約模型。依契約模型分別針對四項平衡計分卡指標進行策略分析與績效評估,應用資料包絡績效分析法來評估各能耐分配策略之於平衡計分卡指標的相對效率,以提供業界作為參考。
本論文之研究成果提供企業一套衡量適當資源能耐分配之策略參照標準,此模型以常用的平衡計分卡四大構面做為效用評估指標以確保策略之彈性與綜觀,並且透過模糊語意量表讓企業得以自行預測參考點,提高模型彈性使其可依據不同時間、階段或企業目標調整參照基準,更加入資料包絡法、差額分析、參考集合分析與敏感度分析來協助公司了解能耐分配策略之效率與改進方向,因而此套研究方法及模型可運用於各種不同的環境、時間階段與產業類別。
The rapid development of information and technology promotes the progress of various industries around the world. Under circumstances with intense competition and uncertainty, companies must allocate their resources and capabilities effectively. The aim of this article is to construct a comprehensive model to help corporates formulate resource allocation strategies. In order to ensure the comprehensiveness and diversity of research, corporates’ capabilities were converted into the four indicators of balanced scorecard as utility measurements. This article also combined contract theory with fuzzy theory to construct the objective model, allowing companies to predict their own reference points of their future utility. In addition, all result strategies were ranked by their relative efficiency using data envelopment analysis. Furthermore, a case of Company A was presented in this article as an example.
林原宏. (2002). 模糊語意量表的語意模糊數建構演算與實證分析.中央研究院調查研究期刊, 1(11), 31-71.
張斐章,張麗秋(2005).類神經網路—模糊集合與模糊邏輯系統.滄海出版社
史綱,鄭漢鐔(2008).公司理財的13堂課—企業價值分析與評估.財團法人台灣金融研訓院, 57
Azadeh, A., Sheikhalishahi, M., Firoozi, M., & Khalili, S. M. (2013). An integrated multi-criteria Taguchi computer simulation-DEA approach for optimum maintenance policy and planning by incorporating learning effects. International Journal of Production Research, 51(18), 5374-5385.
Anuradha, V. P., & Sumathi, D. (2014). A survey on resource allocation strategies in cloud computing. Information Communication and Embedded Systems (ICICES), 1-7.
Ahrens, S., Pirschel, I., & Snower, D. J. (2017). A theory of price adjustment under loss aversion. Journal of Economic Behavior & Organization, 134, 78-95.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of management, 17(1), 99-120.
Borges, N. J., & Richard, G. V. (2018). Using the Delphi Method to Classify Medical Specialties. The Career Development Quarterly, 66(1), 85-90.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). A Data Envelopment Analysis Approach to Evaluation of the Program Follow through Experiment in US Public School Education. Carnegie-mellon Univ Pittsburgh Pa Management Sciences Research Group.
Cheng, G. (2014). Data envelopment analysis:methods and MaxDEA software. Intellectual Property Publishing House Co. Ltd., 40-223.
Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy sets and systems, 3(1), 37-48.
Despotis, D. K., Sotiros, D., & Koronakos, G. (2016). A network DEA approach for series multi-stage processes. Omega, 61, 35-48.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253-290.
Gallotta, B., Garza-Reyes, J. A., & Anosike, A. (2018, March). Using the Delphi method to verify a framework to implement sustainability initiatives. Proceedings of the International Conference on Industrial Engineering and Operations Management.
Herweg, F., & Schmidt, K. M. (2014). Loss aversion and inefficient renegotiation. The Review of Economic Studies, 82(1), 297-332.
Huang, C. W., Ho, F. N., & Chiu, Y. H. (2014). Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan. Omega, 48, 49-59.
Herweg, F., Karle, H., & Müller, D. (2017). Incomplete Contracting, Renegotiation, and Expectation-Based Loss Aversion. Journal of Economic Behavior & Organization.
Jiang, D., & Liu, Z. (2014). Research on application of balanced scorecard in the government performance appraisal. Open Journal of Social Sciences, 2(09), 91.
Jahantigh, F. F., Malmir, B., & Avilaq, B. A. (2018). An integrated approach for prioritizing the strategic objectives of balanced scorecard under uncertainty. Neural Computing and Applications, 29(6), 227-236.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the econometric society, 263-291.
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The journal of economic perspectives, 5(1), 193-206.
Kaplan, R. S., & Norton, D. P. (1992). The Balanced Scorecard-Measures that Drive Performance. Harvard Business Review, 70(1).
Kaplan, R. S., & Norton, D. P. (1992). Linking the balanced scorecard to strategy. California management review, 39(1), 53-79.
Kőszegi, B., & Rabin, M. (2006). A model of reference-dependent preferences. The Quarterly Journal of Economics, 121(4), 1133-1165.
Klingebiel, R., & Rammer, C. (2013). Resource allocation strategy for innovation portfolio management. Strategic Management Journal, 35(2), 246-268.
Kőszegi, B. (2014). Behavioral contract theory. Journal of Economic Literature, 52(4), 1075-1118.
Khodakarami, M., Shabani, A., & Saen, R. F. (2016). Concurrent estimation of efficiency, effectiveness and returns to scale. International Journal of Systems Science, 47(5), 1202-1220.
Kshatriya, A., Dharmadhikari, V., Srivastava, D., & Basak, P. C. (2017). Strategic Performance Measurement Using Balanced Scorecard: A Case of Machine Tool Industry. Foundations of Management, 9(1), 75-86.
Lan, C. H., Chuang, L. L., & Chen, Y. F. (2009). Performance efficiency and resource allocation strategy for fire department with the stochastic consideration. International Journal of Technology, Policy and Management, 9(3), 296-315.
Li, D. and Liu, J. (2014). Dynamic capabilities, environmental dynamism, and competitive advantage: Evidence from China. Journal of Business Research, 67(1), 2793-2799.
López-Espín, J. J., Aparicio, J., Giménez, D., & Pastor, J. T. (2014). Benchmarking and data envelopment analysis. An approach based on metaheuristics. Procedia Computer Science, 29, 390-399.
Lis, R., Sakata, V., & Lien, O. (2017). How to choose? Using the Delphi method to develop consensus triggers and indicators for disaster response. Disaster medicine and public health preparedness, 11(4), 467-472.
Maritan, C. A., & Lee, G. K. (2017). Resource Allocation and Strategy. Journal of Management, 43(8), 2411-2420.
Márquez, A. A., Márquez, F. A., & Peregrín, A. (2017). A scalable evolutionary linguistic fuzzy system with adaptive defuzzification in big data. Fuzzy Systems (FUZZ-IEEE), 1-6.
Malik, M., Efendi, S., & Zarlis, M. (2018, January). Data Envelopment Analysis (DEA) Model in Operation Management. In IOP Conference Series: Materials Science and Engineering , 300(1), 12008
Nickols, F. (2016). Strategy, Strategic Planning, Strategic Thinking, Strategic Management. Distance Consulting LLC, 1-15.
Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & management, 42(1), 15-29.
Pal, M. (2007). Triangular fuzzy matrices. Iranian Journal of Fuzzy Systems, 4(1), 75-87.
Rabin, M. (2007). Reference-dependent risk attitudes. The American Economic Review, 97(4), 1047-1073.
Ross, T. J. (2011). Fuzzy logic with engineering applications. John Wiley and Sons, Ltd., 95-111
Ramanathan, R., Ramanathan, U., & Zhang, Y. (2016). Linking operations, marketing and environmental capabilities and diversification to hotel performance: A data envelopment analysis approach. International Journal of Production Economics, 176, 111-122.
Reda, N. W.(2017).Balanced scorecard in higher education institutions Congruence and roles to quality assurance practices. Quality Assurance in Education,25(4),489-499.
Rubin, J., Samek, A., & Sheremeta, R. M. (2018). Loss aversion and the quantity–quality tradeoff. Experimental Economics, 21(2), 292-315.
Skinner, R., Nelson, R. R., Chin, W. W., & Land, L. (2015). The Delphi Method Research Strategy in Studies of Information Systems. CAIS, 37, 2.
Sekayi, D., & Kennedy, A. (2017). Qualitative Delphi Method: A Four Round Process with a Worked Example. The Qualitative Report, 22(10), 2755-2763.
Vipin, B., & Amit, R. K. (2017). Loss aversion and rationality in the newsvendor problem under recourse option. European Journal of Operational Research, 261(2), 563-571.
Wang, J., Ding, D., Liu, O., & Li, M. (2016). A synthetic method for knowledge management performance evaluation based on triangular fuzzy number and group support systems. Applied Soft Computing, 39, 11-20.
Wang, M., Rieger, M. O., & Hens, T. (2017). The impact of culture on loss aversion. Journal of Behavioral Decision Making, 30(2), 270-281.
Xu, L., Zeng, Z., & Ye, X. (2012). Multi-objective optimization based virtual resource allocation strategy for cloud computing. Computer and Information Science (ICIS), 56-61.
Yang, F., Ang, S., Xia, Q., & Yang, C. (2012). Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis. European Journal of Operational Research, 223(2), 483-488.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.
Zhu, Q., Wu, J., & Song, M. (2017). Efficiency evaluation based on data envelopment analysis in the big data context. Computers & Operations Research, 47(2), 1-10.