簡易檢索 / 詳目顯示

研究生: 蔡宇
Tsai, Yu
論文名稱: 考量死區時間效應之碳化矽永磁同步馬達驅動器設計
Design of Permanent Magnet Synchronous Motor Drive Based on SiC Power Transistor Considering Dead-time Effect
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: 碳化矽功率元件馬達驅動器死區時間
外文關鍵詞: Silicon carbide power transistor, motor drives, dead-time
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於碳化矽功率元件具有切換速度快、耐高溫、導通電阻低等優點,近年來逐漸取代傳統矽功率元件,應用在馬達驅動器及各領域。然而其快速切換之特性會導致電壓突波增加以及非線性因素影響加劇等問題,因此本論文的目標,係以理論分析非線性因素的影響,並根據理論提出電路及控制參數之設計方式。
      本文針對應用於永磁同步馬達驅動之變頻器,以理論計算死區時間(Dead-time)對於變頻器之輸出電壓電流幅值及諧波的影響,接著根據避免過調變與總諧波失真最低的原則,分析死區時間、切換頻率及其他參數的關聯性及限制。另一方面為抑制快速切換造成之突波,本文採用增加閘極驅動器電阻的方式,而此又與死區時間長度相關。綜上所述,本文考慮死區時間及電壓突波,提出電路及控制參數的綜合設計方式,並透過MATLAB/Simulink、SIMPLIS/SIMetrix及ANSYS Twin Builder等軟體模擬驗證理論。最後,本文製作一具碳化矽功率元件之馬達驅動器,以實測驗證模擬及理論之分析結果。

    Due to the advantages of silicon carbide (SiC) power transistor such as fast switching speed, high-temperature resistance, and low conduction resistance, they have gradually replaced traditional silicon power devices in recent years across various fields such as motor drives. However, their rapid switching characteristics can lead to increased voltage spikes and exacerbated effects of nonlinear factors. Hence, the objective of this thesis is to analyze the impact of nonlinear factors through theoretical analysis and propose circuit and control parameter design methods based on this analysis.
    This thesis focuses on inverters applied to permanent magnet synchronous motor (PMSM) drives. It utilizes theoretical calculations to assess the impact of dead time on the amplitude of the output voltage and current as well as harmonics in the inverter. Subsequently, based on the principles of avoiding over-modulation and minimizing total harmonic distortion (THD), the interrelation and constraints between dead-time, switching frequency, and other parameters are analyzed. Furthermore, to suppress voltage spikes caused by rapid switching, the method of increasing gate driver resistance is adopted, which is correlated with dead-time.
    In summary, considering dead-time and voltage spikes, a comprehensive design method for circuits and control parameters is proposed. The theoretical findings are verified through simulations using software such as MATLAB/Simulink, SIMPLIS/SIMetrix, and ANSYS Twin Builder. Finally, a motor drive based on silicon carbide power transistor is implemented. Then the experiment results are used to validate the analytical results from simulations and theory.

    摘要 I 致謝 XIX 目錄 XX 表目錄 XXIII 圖目錄 XXV 符號表 XXIX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.2.1 時間補償法 4 1.2.2 平均電壓補償法 5 1.2.3 其他補償方法 6 1.2.4 小結 6 1.3 研究動機及目的 7 1.4 論文架構 8 第二章 永磁同步馬達與驅動控制器 9 2.1 永磁同步馬達 9 2.1.1 座標軸轉換 9 2.1.2 永磁同步馬達之數學模型 11 2.2 馬達驅動控制法 14 2.2.1 空間向量脈波寬度調變 14 2.2.2 磁場導向控制 21 2.3 馬達驅動器及非線性因素之影響 26 2.3.1 電流路徑分析 28 2.3.2 非線性因素對輸出電壓造成之影響 30 2.3.3 等效死區時間導致之輸出電壓空間向量縮減 33 2.3.4 等效死區時間導致之諧波失真 36 第三章 考量等效死區時間之電路及控制參數設計 39 3.1 考量電壓幅值之設計 39 3.2 考量諧波之設計 45 3.3 閘極驅動器設計 62 3.3.1 閘源極電壓突波分析 62 3.3.2 電壓突波抑制方法 67 3.4 控制參數設計 68 第四章 馬達驅動之變頻器損失估算 72 4.1 導通損失與二極體損失 72 4.2 切換損失 74 4.3 理論計算與模擬之比較 80 第五章 實驗結果 84 5.1 永磁同步馬達驅動控制系統之硬體規劃 84 5.2 實驗結果 86 5.3 小節 95 第六章 結論與未來展望 96 6.1 結論 96 6.2 未來展望 98 參考文獻 99

    [1] 財團法人車輛研究測試中心,2022年主要電動車銷售國家市場概況,Available [Online]https://www.artc.org.tw/tw/knowledge/articles/13697
    [2] A. Imbruglia, M. Saggio, S.Cascino, A. Minotti, M. Renna, A. Lionetto and S. Primosole, "WInSiC4AP: Wide Band Gap Innovative SiC for Advanced Power," in Proceedings of 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, pp. 1-6, 2019
    [3] Infineon, “Power Conversion Switch Technology: the Who, When, Where and Why of Using Si, SiC and GaN Transistors,” Available [Online]https://www.psma.com/sites/default/files/uploads/tech-forums-semiconductor/presentations/is042-power-conversion-switch-technology-who-when-where-and-why-using-si-sic-and-gan-transistors.pdf
    [4] J. Yi, Y. Yang, J. Zhou, H. Ding, X. Guo, and S. Padmanaban. “Control Strategies of Mitigating Dead-time Effect on Power Converters: An Overview,” Electronics 8, no. 2: 196., 2019
    [5] S. Jeong and M. Park, “The Analysis and Compensation of Dead-time Effects in PWM Inverters,” IEEE Transactions on Industrial Electronics, vol. 38, no. 2, pp. 108-114, Apr. 1991
    [6] F. Cao, J. Liu and Y. Zhang, “A Switching Strategy of Dead-time Elimination for Pulse Width Modulation Converters,” in Proceedings of 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, pp. 1-14, 2015
    [7] B. Zhang, A. Q. Huang, B. Chen, and Y. Liu, “A New Generation Emitter Turn-off (ETO) Thyristor to Reduce Harmonics in the High Power PWM Voltage Source Converters,” in Proceedings of the 4th International Power Electronics and Motion Control Conference, IPEMC 2004., Xi'an, China, pp. 327-331 Vol.1., 2004
    [8] L. Chen and F. Z. Peng, “Dead-time Elimination for Voltage Source Inverters,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 574-580, Mar. 2008
    [9] H. Wang, J. Wang, Z. Wang and J. Zhao, “A Novel Dead-time Compensation in Vector Controlled PMSM System,” in Proceedings of the 30th Chinese Control Conference, Yantai, China, pp. 3478-3483., 2011
    [10] A. Cichowski and J. Nieznanski, “Self-tuning Dead-time Compensation Method for Voltage-source Inverters,” IEEE Power Electronics Letters, vol. 3, no. 2, pp. 72-75, Jun. 2005
    [11] M. G. Wu, R. X. Zhao, and X. Z. Tang, “Dead-time effects analysis and compensation of SPWM and SVPWM inverter,” in Proceedings of CSEE 2006, 26, pp. 101–105, 2006
    [12] C. Li, Y. Ge, W. Li, X. He, Z, Dong, G. Chen, C. Ma, L. Zhang, “Analysis and Compensation of Dead-time Effect Considering Parasitic Capacitance and Ripple Current,” in Proceedings of 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, pp. 1501-1506, 2015
    [13] R. B. Sepe and J. H. Lang, “Inverter nonlinearities and Discrete-time Vector Current Control,” IEEE Transactions on Industry Applications, vol. 30, no. 1, pp. 62-70, Jan.-Feb. 1994
    [14] Z. Zhang and L. Xu, “Dead-Time Compensation of Inverters Considering Snubber and Parasitic Capacitance,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3179-3187, Jun. 2014
    [15] B. Ludek, O. Lukas, and G. Miroslav, “Effective Dead-time Compensation Using Adaptive Harmonic Compensator,” in Proceedings of IFAC-LiteraturesOnLine 2015, 48, 336–341., 2015
    [16] B. Ludek and O. Lukas, “Online Adaptive Compensation Scheme for Inverter Nonlinearity in PMSM Drive,” in Proceedings of 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, pp. 166-171, 2015
    [17] C. -H. Choi, K. -R. Cho and J. -K. Seok, “Inverter Nonlinearity Compensation in the Presence of Current Measurement Errors and Switching Device Parameter Uncertainties,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 576-583, Mar. 2007
    [18] M. A. Herran, J. R. Fischer, S. A. Gonzalez, M. G. Judewicz and D. O. Carrica, “Adaptive Dead-Time Compensation for Grid-Connected PWM Inverters of Single-Stage PV Systems,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2816-2825, Jun. 2013
    [19] Lim, J. Woo, H. Bu, and Y. Cho., “Novel Dead-Time Compensation Strategy for Wide Current Range in a Three-Phase Inverter,” Electronics 8, no. 1: 92., 2019
    [20] X. Guo, Y. Yang and X. Wang, “Optimal Space Vector Modulation of Current-Source Converter for DC-Link Current Ripple Reduction,” IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1671-1680, Mar. 2019
    [21] Y. Yang, K. Zhou, H. Wang and F. Blaabjerg, “Analysis and Mitigation of Dead-Time Harmonics in the Single-Phase Full-Bridge PWM Converter With Repetitive Controllers,” IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5343-5354, Sept.-Oct. 2018
    [22] R. Costa-Castello, J. Nebot and R. Grino, “Demonstration of the Internal Model Principle by Digital Repetitive Control of an Educational Laboratory Plant,” IEEE Transactions on Education, vol. 48, no. 1, pp. 73-80, Feb. 2005
    [23] 羅聲喨,永磁同步馬達模型建立與控制,國立中央大學電機工程研究所在職專班碩士論文,2014。
    [24] T. Qiu, X. Wen and F. Zhao, “Adaptive-Linear-Neuron-Based Dead-Time Effects Compensation Scheme for PMSM Drives,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2530-2538, Mar. 2016.
    [25] W. Dafang, Y. Bowen, Z. Cheng, Z. Chuanwei and Q. ji, “A Feedback-Type Phase Voltage Compensation Strategy Based on Phase Current Reconstruction for ACIM Drives,” IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 5031-5043, Sept. 2014
    [26] Q. Hu, H. Hu, Z. Lu and W. Yao, “A Novel Method for Dead-time Compensation Based on SVPWM,” in Proceedings of Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC, Austin, TX, USA, 2005, Vol. 3, pp. 1867-1870, 2005
    [27] Z. Wu, H. Zhang, K. Liu, W. Hua, G. Zhang, B. Wang, S. Ding, and J. Hang, “Dead-Time Compensation Based on a Modified Multiple Complex Coefficient Filter for Permanent Magnet Synchronous Machine Drives,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12979-12989, Nov. 2021
    [28] S. -H. Hwang and J. -M. Kim, “Dead Time Compensation Method for Voltage-Fed PWM Inverter,” IEEE Transactions on Energy Conversion, vol. 25, no. 1, pp. 1-10, Mar. 2010
    [29] B. Jung, T. Lee and K. Nam, “Overmodulation Strategy for Voltage Source Inverter With a Single DC-Link Current Sensor,” IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 531-540, Jan.-Feb. 2022
    [30] Adlee,MA2 3700馬達規格,Available [Online]https://www.adlee.com/zh-tw/product-552510/%E7%84%A1%E5%88%B7%E4%BC%BA%E6%9C%8D%E9%A6%AC%E9%81%94.html#ma2
    [31] W. Liang, J. Wang, P. C. -K. Luk, W. Fang and W. Fei, “Analytical Modeling of Current Harmonic Components in PMSM Drive With Voltage-Source Inverter by SVPWM Technique,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 673-680, Sept. 2014
    [32] H. Deng, L. Helle, Y. Bo and K. B. Larsen, “A General Solution for Theoretical Harmonic Components of Carrier Based PWM Schemes,” in Proceedings of 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, pp. 1698-1703, 2009
    [33] Z. Qiu, X. Huang, K. Ma, Z. Kong and X. Liu, “Sideband Vibro-Acoustic Responses and Improvements With Different Pulsewidth Modulation Strategies in Permanent Magnet Synchronous Motor for Electric Vehicle,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7098-7108, Dec. 2022
    [34] ROHM, “SCT3060AL N-channel SiC power MOSFET”, Datasheet, Jun. 2018
    [35] 楊崴壬,碳化矽功率元件應用於永磁同步馬達驅動器之寄生參數分析,國立成功大學電機工程學系碩士論文,2020
    [36] A. Acquaviva, A. Rodionov, A. Kersten, T. Thiringer, and Y. Liu, “Analytical Conduction Loss Calculation of a MOSFET Three-Phase Inverter Accounting for the Reverse Conduction and the Blanking Time,” IEEE Transactions on Power Electronics, vol. 68, pp. 6682-6691, Aug. 2021
    [37] K. Fan, J. Luo, Z. Jin, and B. Li, “Comparison of Thermal Performance between Parallel MOSFETs and IPM,” in Proceedings of 2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), Nov. 2020
    [38] L. Zhang, X. Yuan, J. Zhang, X. Wu, Y. Zhang, and C. Wei, “Modeling and Implementation of Optimal Asymmetric Variable Dead-Time Setting for SiC MOSFET-Based Three-Phase Two-Level Inverters,” IEEE Transactions on Power Electronics, vol.34, pp. 11645-11660, Dec. 2019.
    [39] M. Shen and S. Krishnamurthy, “Simplified Loss Analysis for High Speed SiC MOSFET Inverter,” in Proceedings of 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Feb. 2012.
    [40] IXYS, “MOSFET/IGBT Drivers Theory and Applications,” Available [Online]https://www.ixys.com/documents/appnotes/ixan0010.pdf
    [41] J. Guo, H. Ge, J. Ye, and A. Emadi, “Improved Method for MOSFET Voltage Rise-time and Fall-time Estimation in Inverter Switching Loss Calculation,” in Proceedings of 2015 IEEE Transportation Electrification Conference and Expo (ITEC), Jun. 2015

    QR CODE