簡易檢索 / 詳目顯示

研究生: 李晏全
Li, Yen-Chuan
論文名稱: 石門水庫枯水期月與季入流量預報之研究
Monthly and Seasonal Inflow Forecasting of Shihmen Reservoir during the Dry Seasons
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 時間尺度連續型降雨逕流模式長期天氣展望入流量預報系統
外文關鍵詞: inflow forecasting system, long-term weather outlook, continuous rainfall-runoff model, time scales
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣地區在有限的水資源環境下,倘若水庫單位能夠精確地預測上游集水區之入流量,將可提供水庫在枯水期有效的放水操作與管理。本研究擬建構之長期入流量預報系統,係結合不同時間尺度之連續型降雨-逕流模式與中央氣象局長期天氣展望之預報結果,來進行水庫未來三旬(月)之入流量預報。本文主要研究內容包含:(1)發展以日為時間尺度之連續型降雨-逕流模式,(2)並進一步發展旬模式與月模式,進而與日模式比較其模擬精度與評鑑結果,(3)最後配合修正後之中央氣象局長期天氣展望資料,以不同時間尺度降雨-逕流模式進行未來三旬(月)水庫之入流量預測。

      針對以上項目分析結果顯示:模式無論以日、旬及月為時間單位進行,其結果皆能夠合理模擬集水區之降雨-逕流關係。結果亦發現,將日模式結果累加成旬及月時間單位,能改善枯水期間模擬流量低估之情形。長期入流量預報方面,研究中將不同時間尺度之預報系統與直接利用平均值為參考基準兩種方式進行優劣比較,結果得知:本文採用水庫枯水期長期入流量於不同時間尺度模式之預報能力,皆較以歷年旬(月)入流量平均值為基準更可以掌握流量變動之趨勢。綜合以上結果,本文發展以日為時間尺度之降雨-逕流模式,除能有效提昇模式於旬(月)時間尺度之模擬精度外,更期望能夠因應未來中央氣象局發佈不同時距之氣象預報資料,進而準確地預測水庫上游集水區之入流量,以支援水庫管理單位進行放水操作決策與乾旱預警之依據。

      If the reservoir inflows can be forecasted precisely beforehand, they may benefit the reservoir operation and management in Taiwan. The long-term inflow forecasting system of reservoir combines a continuous rainfall-runoff model with the long-term weather outlook provided by the Central Weather Bureau to forecast one-month and three -month ahead inflows with the ten-day and one-month time steps. There are several tasks in the present study, including (1) the developing of a rainfall-runoff model based on the daily time step, (2) the developing of ten-day and monthly model and further comparing the accuracy among ten-day, monthly and daily model, (3) the combining of the modified long-term weather outlook and the continuous rainfall-runoff with different time steps to forecast the monthly and three-month inflows.

      The results reveal the continuous rainfall-runoff model has good performances on daily, ten-day and monthly flow simulation. The comparison shows that the daily time scale model has better performances than the ten-day and monthly one. Forecasted inflows by using different time scale model are compared with the historical average inflows. The comparison indicates that the proposed inflow forecasting system has better results in inflow forecasting. In conclusion, the daily rainfall-runoff model can get the better accuracy. Daily time scale can be easily used in different time scale forecasting data of Central Weather Bureau in the future. The inflow forecasting may support the reservoir management for operation decision and drought warning.

    摘 要 I Abstract II 謝 誌 III 目 錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 1 1-3 本文組織架構                    5 第二章 研究區域概述                  7 2-1 地理位置與地文特性                 7 2-2 氣象與水文特性                   8 第三章 連續型降雨-逕流模式              12 3-1 模式理論與架構                  12 3-1-1 土壤含水量作用部份               13 3-1-2 逕流反應部份                  15 3-1-3 連續方程式                   16 3-2 參數率定方法                   16 3-2-1 目標函數設定                  17 3-2-2 最佳化參數率定方法               18 3-3 評鑑指標                     19 3-4 日模式參數率定及驗證               20 3-4-1 日模式的率定                  20 3-4-2 日模式的驗證                  25 第四章 不同時間尺度模式模擬之比較           28 4-1 旬模式參數率定與驗証               28 4-1-1 旬模式的率定結果                28 4-1-2 旬模式的驗証結果                34 4-2 月模式參數率定與驗証               37 4-2-1 月模式的率定結果                37 4-2-2 月模式的驗証結果                43 4-3 日、旬及月模式模擬結果之比較           46 4-3-1 模式於日與旬時間尺度之探討           46 4-3-2 模式於日與月時間尺度之探討           52 4-4 結語                       58 第五章 水庫枯水期入流量於不同時間尺度模式之預報    59 5-1 石門水庫之長期天氣展望              59 5-2 水庫枯水期月長期入流量預報            60 5-2-1 月長期入流量預報架構              60 5-2-2 日模式和旬模式於月長期入流量預報結果      62 5-3 水庫枯水期季長期入流量預報            73 5-3-1 季長期入流量預報架構              73 5-3-2 日模式與月模式於季長期入流量預報結果      74 5-4 結語                       80 第六章 結論與建議                   81 6-1 結論                       81 6-2 建議                       82 參考文獻                       84

    1.王如意、譚智宏,修正型水筒之研究及其應用於流域逕流量之預測,台灣水利季刊,第三十九卷,第三期,第1-23頁,1991。
    2.吳雷根,曾文水庫枯水期長期入流量預測之研究,國立成功大學水利及海洋工程研究所,碩士論文,2004。
    3.李光敦,水筒模式與降雨-逕流模擬,農業工程學報,第三十九卷,第二期,第20-28頁,1993。
    4.張斐章、徐國麟,兩種推估低流量方法之探討,臺灣水利季刊,第三十八卷,第一期,第48-57頁,1990。
    5.陳莉、江柏寬、蔡家盛,因應乾旱使用進化演算法於流量預測之研究,水資源管理研討會,第69-81頁,2002。
    6.黃文政、謝宏智,旱季期間水庫入流量長期預報之研究,農業工程學報,第四十卷,第三期,第15-27頁,1994。
    7.黃俊銘,曾文水庫集水區旬降雨-逕流模式之研究,國立成功大學水利及海洋工程研究所,碩士論文,1997。
    8.楊道昌、游保杉,目標函數對連續型降雨-逕流模式率定之影響,臺灣水利季刊,第四十五卷,第四期,第66-73頁,1997。
    9.楊道昌,區域連續型降雨-逕流模之研究,國立成功大學水利及海洋工程研究所,博士論文,1999。
    10.游保杉、吳雷根,結合天氣展望資料預報曾文水庫枯水期之入流量,天氣分析與預報研討會,第141-146頁,2003。
    11.Bako, M. D. and D. N. Hunt, “Derivation of baseflow recession constant using computer and numerical analysis”, Hydrological Sciences - Journal - des Sciences Hydrologiques, 33(4), pp. 357-367, 1988.
    12.Bako, M. D. and A. Owoade, “Field application of a numerical method for the derivation of baseflow recession constant”, Hydrological Processes, 2, pp. 331-336, 1988.
    13.Baratti, R., B. Cannas, A. Fanni, M. Pintus, G. M. Sechi, and N. Toreno, “River flow forecast for reservoir management through neural networks”, Neurocomputing, 55, pp.421-437, 2003.
    14.Bergström, S., “Development and application of a digital runoff model, in Sweden”, SMHI, Notiser och preliminära rapporter, serie HYDRLOLOGI, NO. 22, Norrköping, 1972.
    15.Bergström, S., “Development and application of a conceptual runoff model for Scandinavian Catchments”, SMHI, Reports RHO, NO. 7, Norrköping, 1976.
    16.Bergström, S., “The HBV model-its structure and applications”, SMHI, Reports RH, NO. 4, Norrköping, 1992.
    17.Bouhton, W. C., “Linear and curvilinear baseflow recessions”, Journal of Hydrology, 25(1), pp. 41-48, 1986.
    18.Diskin, M. H., and E. Simon, “The relationship between the time bases of simulation models and their structure”, Water Resources Bulletin, 15(6), pp. 1716-1732, 1979.
    19.Dong, S. H., H. C. Zhou, and H. J. Xu, “A forecast model of hydrologic single element medium and long-period based on rough set theory”, Water Resoures Management, 18, pp.483-495, 2004.
    20.Druce, J. D., “Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model”, Journal of Hydrology, 249, pp.102-112, 2001.
    21.Duan, Q., S. Sorooshian, and V. K. Gupta, “Effective and efficient global optimization for conceptual rainfall-runoff models”, Water Resources Research, 28(4), pp. 1015-1031, 1992.
    22.Duan, Q., S. Sorooshian, and V. K. Gupta, “Shuffled complex evolution approach for effective and efficient global minimization”, Journal of Optimization Theory and Application, 76(3), pp. 501-521, 1993.
    23.Duan, Q., S. Sorooshian, and V. K. Gupta, “Optimal use of the SCE-UA global optimization method for calibrating watershed models”, Journal of Hydrology, 158(3-4), pp. 265-284, 1994.
    24.Figueiredo, M., R. Ballini, S. Soares, M. Andrade and F. Gomide, “Learning algorithms for a class of neurofuzzy network and application”, IEEE Transactions on systems, man, and cybernetics-partC: Applications and reviews, 34(3), pp.293-301, 2004.
    25.Hamon, W. R., “Estimating potential evapotranspiration”, Journal of Hydraulics Division, 87(3), pp. 107-120, 1961.
    26.Kothyari, U. C., “Estimation of monthly runoff from small catchments in India”, Hydrological Sciences - Journal - des Sciences Hydrologiques, 40(4), pp. 533-541, 1995.
    27.Lindström, G., B. Johansson, M. Persson and M. Gardlin, “Development and test of the distributed HBV-96 hydrological model”, Journal of Hydrology, 201(1-4), pp. 272-288, 1997.
    28.Lindén, R. and J. Harlin, “Analysis of conceptual rainfall-runoff modeling performance in different climates”, Journal of Hydrology, 238(3-4), pp. 231-247, 2000.
    29.Madsen, H., “Parameter estimation in distributed hydrological catchment modeling using automatic calibration with multiple objectives”, Advance in Water Resourses, 26(2), pp. 205-216, 2003.
    30.Madsen, H., G. Wilson and H. C. Ammentorp, “Comparison of different automated strategies for calibration of rainfall-runoff models”, Journal of Hydrology, 261(1-4), pp. 48-59, 2002.
    31.Mahabir, C., F. E. Hicks and A. R. Fayek, “Application of fuzzy logic to forecast seasonal runoff”, Hydrological Processes, 17, pp.3749-3762, 2003.
    32.Mimikou, M. and A. R. Rao, “Regional monthly rainfall-runoff model”, Journal of Water Resources Planning and Management, ASCE, 109(1), pp. 75-93, 1983.
    33.Muftuoglu, R. F., “Monthly runoff generation by non-linear models”, Journal of Hydrology, 125(3-4), pp. 277-291, 1991.
    34.Nelder, J. A. and R. Mead, “A simplex method for function minimization”, Computer Journal, 3, pp. 308-313, 1965.
    35.Sajikumar, N., and B. S. Thandaveswara, “A non-linear rainfall -runoff model using an artificial neural network”, Journal of Hydrology, 216(1-2), pp. 32-55, 1999.
    36.Seibert, J., “Estimation of parameter uncertainty in the HBV model”, Nordic Hydrolohy, 28(4/5), pp. 247-262, 1997.
    37.Seibert, J., “Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure”, Hydrological Sciences-Journal-des Sciences Hydrologiques, 44(5), pp. 779-797, 1999.
    38.Sharma, A., R. V. Singh, S. M. Narulkar and P. K. Dashora, “Identification of appropriate stochastic model for forecasting monsoonal river inflows”, International Agricultural Engineering Journal, 12(3-4), pp.191-208, 2003.
    39.Singh, V. P., “Computer models of watershed hydrology, Water Resources Publications”, Highlands Ranch, Colorado, U.S.A., 1995.
    40.Sorooshian, S., Q. Duan and V. K. Gupta, “Calibration of the SMA-NWSRFS conceptual rainfall-runoff model using global optimization”, Water Resources Research, 29(4), pp. 1185-1194, 1993.
    41.Souza Filho, F. A. and U. Lall, “Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: Applications of a multivariate, semiparametric algorithm”, Water Resources Research, 39(11), pp.SWC1-1~1-13, 2003.
    42.Tallaksen, L. M., “A review of baseflow recession analysis”, Journal of Hydrology, 165(1-4), pp. 349-370, 1995.
    43.Tootle Glenn, A. and C. Piechota Thomas, “Suwannee river long range streamflow forecasts based on seasonal climate predictors”, Journal of the American Water Resources Association, 40(2), pp.523-532, 2004.
    44.Tucci, C. E., R. T. Clarke, W. P. Collischonn, L. Da Silva Dias and G. S. De Oliverira, “Long-term flow forecasts based on climate and Hydrologic modeling: Uruguay River basin”, Water Resources Research, 39(7), pp.SWC3-1~3-11, 2003.
    45.Vogel, R. M. and C. N. Kroll, “Estimation of baseflow recession constants”, Water Resources Management, 10(4), pp. 303-320, 1996.
    46.Yapo, P. O., H. V. Gupta and S. Sorosshian, “Multi-objective global optimization for hydrologic models”, Journal of Hydrology, 204(1-4), pp. 83-97, 1998.
    47.Zhang, X. and G. Lindström, “Developed of an automatic calibration scheme for the HBV hydrological model”, Hydrological Processes, 11(12), pp.1671-1682, 1997.

    下載圖示 校內:立即公開
    校外:2006-06-29公開
    QR CODE