| 研究生: |
邱仕榮 Chiu, Shiu-Jung |
|---|---|
| 論文名稱: |
移動平台與手臂運動控制器之設計與實現 Design and Implementation of Motion Platform and Manipulator Controller for Home Service Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 手臂運動 、逆運動學 、模糊控制 、居家服務型機器人 、移動平台 |
| 外文關鍵詞: | home service robot, manipulation, inverse kinematic, fuzzy control, motion platform |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係討論居家服務型機器人之移動平台與手臂運動控制器設計。首先描述機器人的硬體架構設計,本機器人為一個高135公分、40公斤,具有一雙6個自由度的機器手臂與移動平台的居家服務機器人。文中將移動平台控制與手臂運動控制分別討論,其所用致動器分別為裝備有光學編碼器的直流馬達與DYNAMIXEL所製造的伺服馬達。在移動平台中,可藉由編碼器計算出直流馬達所轉角度,並結合馬達控制器與人機介面,以核心處理器NIOS FPGA與SOPC發展介面為中心,發展出一個強健的模糊控制移動平台。在手臂方面,使用運動學與逆運動學之幾何方法推算機器手臂的運動模型,將已知的手臂位置與姿態換算成各個對應關節所需角度,並藉由手臂軌跡控制器產生控制命令,以達成機器手臂的目標追蹤控制行為。最後,由實驗結果來驗證所設計之機器手臂與移動平台控制系統的效益。
This thesis mainly explores the control of the motion platform and the manipulation of a home service robot. First, the hardware architecture is described. This home service robot with 135 cm height and 40 kg weight, has a pair of 6-DOF (degree of freedom) robot arm and a motion platform.
This thesis presents the motion platform driven by DC motors equipped with optical encoders and the robot arms consist of the servo motor manufactured by DYNAMIXEL. In motion platform, the angle of the rotation, motor controller and the graphic user interface are combined to implement a robust fuzzy control motion platform system. Besides, the NIOS is used as a central processor unit and a development interface is utilized to construct a control strategy generated system. For the robot arm control, to use the kinematic and the geometrical inverse kinematic analysis, we can derive a mathematic algorithm which transforms the arm position and posture to the joint angles of the corresponding rotary joint. Furthermore, we develop a trajectory strategy controller to command and track the destination movements. Finally, the experimental results illustrate the feasibility of the proposed system.
[1] G. A. Bekey, Autonomous robots: from biological inspiration to implementation and control, MIT Press, 2005.
[2] J. M. Valin, Y. Shun’ichi, J. Rouat, F. Michaud, K. Nakadai and G. O. Hiroshi, “Robust recognition of simultaneous speech by a mobile robot,” in Proc. IEEE Trans. on Robotics, Vol. 23, No. 4, pp. 1552-3098, 2007.
[3] J. Zhang and A. Knoll, “A two-arm situated artificial communicator for human–robot cooperative assembly,” in Proc. IEEE Trans. on Industrial Electronics, Vol. 50, No. 4, pp. 651-658, 2003.
[4] Y. R. Oh, J. S. Yoon, J. H. Park, M. Kim and H. K. Kim, “A name recognition based call-and-come service for robots”, IEEE, 0098 3063/08,247-253, 2008.
[5] K. C. Kwak and S. S. Kim, “Sound source localization with the aid of excitation source information in home robot environments,” in Proc. IEEE Trans. on Consumer Electronics, Vol. 54, No. 2, pp. 852-857, May 2008.
[6] T. Xiao, M. Li, Q. Huang, W. Zhang and L. He, “Analysis of pushing manipulation by humanoid robot BHR-2 during dynamic walking,” in Proc. the IEEE International Conf. on Automation and Logistics, pp. 3000-3005, China, 2007.
[7] H. Ishiguro, T. Ono, M. Imai and T. Kanda, “Development and evaluation of an interactive humanoid robot-Robovie,” in Proc. ICRA IEEE International Conf. on Robotics and Automation, Vol. 2, pp. 1848-1855, Washington DC, 2002.
[8] D. T. Nguyen, S. R. Oh and B. J. You, “A framework for internet-based interaction of humans, robots, and responsive environments using agent technology,” in Proc. IEEE Trans. on Industrial Electronics, Vol. 52, No. 6, pp. 1521-1529, Dec. 2005.
[9] H. Kobayashi and M. Yanagida, “Moving object detection by an autonomous guard robot,” in Proc. the 4th IEEE Int. Workshop on Robot and Human Communication, pp. 323-326, Tokyo, 1995.
[10] Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura and S. Yuta, “Security service system using autonomous mobile robot,” in Proc. the IEEE SMC '99 Conf. on Systems, Man, and Cybernetics, Vol. 4, pp. 825-829, 1999.
[11] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, McGraw-Hill, 1987.
[12] M. Xie, Fundamentals of robotics: linking perception to action, World Scientific, 2003.
[13] L. W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators, John Wiley & Sons, 1999.
[14] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot modeling and control, John Wiley & Sons, 2006.
[15] D. H. Song and S. Jung, “Geometrical analysis of inverse kinematics solutions and fuzzy control of humanoid robot arm under kinematics constraints,” in Proc. the IEEE International Conf. on Mechatronics and Automation, pp. 1178-1183, China, 2007.
[16] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai and H. Ueno, “Knowledge-based person-centric human-robot interaction using facial and hand gestures,” in Proc. the 2004 IEEE Int. Conf. on Systems, Man, and Cybernetics, Vol. 3, pp. 2121-2127, 2004.
[17] J. Nakanishi, R. Cory, M. Mistry, J. Peters and S. Schaal, “Comparative experiments on task space control with redundancy resolution,” in Proc. the 2005 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 3901-3908, 2005.
[18] H. Yussof, M. Ohka, M. Yamano and Y. Nasu, “Biped locomotion strategy in humanoid robot navigation: a case of speed-up walk,” in Proc. the 2007 IEEE., pp. 1-4244-1264-1, 2007.
[19] Y. D. Kim, B. J. Lee, J. H. Ryu and J. H. Kim, “Landing force control for humanoid robot by time-domain passivity approach,” in Proc. IEEE Trans. on Robotics, Vol. 23, No. 6, Dec. 2007.
[20] S. U. Ryu, C. J. Kim and K. H. Coi, “Multi-arm path generation method for humanoid robots,” in Proc. the 2007 IEEE Int. Conf. on Robot & Human Interactive Communication, pp. 224-227, Ro-Man, 2007.
[21] H. Martínez-Alfaro and S. Gómez-García, “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert on Systems with Applications, Vol. 15, No.3, pp. 421-429, 1998.
[22] K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato and M. Inaba, “Vision based behavior verification system of humanoid robot for daily environment tasks,” in Proc. the 2006 IEEE Int. Conf. on Humanoid Robots, pp. 7-12, 2006.
[23] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi and T. Isozumi, “Humanoid robot HRP-2,” in Proc. the 2004 IEEE Int. Conf. on Robotics & Automation, pp. 1083-1090, LA, 2004.
[24] TWENDY-ONE, http://rj3sp.blogspot.com/2009/01/japanese-nurse-robot-twendy-one.html
[25] ASIMO, http://asimo.honda.com/
[26] A. Edsinger and C. C. Kemp, “Manipulation in human environments,” in Proc. the 2006 6th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 102-109, 2006.
[27] P. Nanua, K. J. Waldron and V. Murthy, “Direct kinematic solution of a stewart platform,” in Proc. IEEE Trans. on Robotics Automation, Vol. 6, No. 4, pp. 438-444, 1990.
[28] R. Ricard and C. Gosselin, “On the development of hybrid planar manipulators,” in Proc. the 1993 IEEE Int. Conf. on Circuits and Systems, Vol. 1, pp. 398-401, 1993.
[29] K. Erbatur, O. Kaynak and I. Rudas, “Fuzzy identifier based inverse dynamics control for a 3-DOF articulated manipulator,” in Proc. the 1997 IEEE Int. Conf. on Industrial Electronics, Control, and Instrumentation, Vol. 3, pp. 1052-1056, 1997.
[30] Robotics Research Corporation, http://www.robotics-research.com/.
[31] M. J. H. Lum, J. Rosen, M. N. Sinanan and B. Hannaford, “Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches,” in Proc. IEEE Trans. on Biomedical Engineering, Vol. 53, No. 7, Jul. 2006.
[32] A. Krieger, R. C. Susil, C. Ménard, J. A. Coleman, G. Fichtinger, E. Atalar and L. L. Whitcomb, “Design of a novel MRI compatible manipulator for image guided prostate interventions,” in Proc. IEEE Trans. on Biomedical Engineering, Vol. 52, No. 2, Feb. 2005.
[33] H. Kawasaki and T. Mouri, “Design and control of five-fingered haptic interface opposite to human hand,” in Proc. IEEE Trans. on Robotics, Vol. 23, No. 5, Vol. 3, pp. 1552-3098, Oct. 2007.
[34] Altera Corporation, http://www.altera.com/.
[35] S. H.g Hsu, “Design and implementation of motion control system for semi-humanoid robot arm,” etd-0906108-145052, 2007.
[36] LM2576, http://www.national.com/ds/LM/LM2576.pdf.
[37] MD03, http://www.futurashop.it/pdf_eng/7300-MD03.pdf.
[38] Faulhaber Group, http://www.micromo.com/n128190/n.html.
[39] ROBOTIS, http://www.robotis.com/zbxe/intro.
[40] Logitech, http://www.logitech.com/index.cfm.
[41] SICK, http://www.sick.com/group/EN/home/Pages/Homepage1.aspx.
[42] Robot Electronic, http://www.robot-electronics.co.uk/.
[43] Faulhaber Group, http://www.faulhaber-group.com/.
[44] L. A. Zadeh, “Fuzzy algorithm,” Information Control, Vol. 12, pp. 94-102, 1968.
[45] L. A. Zadeh, “Fuzzy sets,” Information Control, Vol. 8, pp. 338-353, 1965.
[46] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” in Proc. IEEE Trans. on Systems, Man and Cybernetics, Vol. 3, pp. 28-44, 1973.
[47] Z. Li, T. J. Tarn and A. K. Bejczy, “Dynamic workspace analysis of multiple cooperating robot arms,” in Proc. IEEE Trans. on Robotics and Automation, Vol. 7, No. 5, Oct. 1991.
[48] L. Guilamo, J. Kuffner, K. Nishiwaki and S. Kagami, “Efficient prioritized inverse kinematic solutions for redundant manipulators,” in Proc. the 2005 IEEE Int. Conf. on Intelligent Robot and Systems, pp. 3921-3926, 2005.
[49] M. Koga, K. Kosuge, K. Furuta and K. Nosaki, “Coordinated Motion Control of Robot Arms Based on the Virtual Internal Model,” in Proc. IEEE Trans. on Robotics and Automation, Vol. 8, No. 1, pp.77-85, Feb. 1992.
[50] M. Tarokh, “Decoupled nonlinear three-term controllers for robot trajectory tracking,” in Proc. IEEE Trans. on Robotics and Automation, Vol. 15, No. 2, pp. 453-464, 1999.
[51] K. Sun and V. Lumelsky, “Path planning among unknown obstacles: the case of a three-dimensional cartesian arm,” in Proc. IEEE Trans. on Robotics and Automation. Vol. 8, No. 6, pp. 776-786, Dec. 1992.
[52] J. X. Xu and W. Wang, “Two optimization algorithm for solving robotics inverse kinematics with redundancy,” in Proc. the 2007 IEEE Int. Conf. on Control and Automation, pp. 3021-3028, China, 2007.
[53] R. P. Paul, “Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators,” MIT Press, 1981.