簡易檢索 / 詳目顯示

研究生: 吳漢祥
Wu, Han-Hsiang
論文名稱: 具快速負載暫態響應及補償器電壓控制之直流-直流降壓轉換器
A Current-Mode Control DC-DC Buck Converter with Adaptive Voltage-Setting-Control Technique for Fast Load-Transient Response
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 72
中文關鍵詞: 快速負載暫態響應適應性補償器電壓設置控制電容電流偵測
外文關鍵詞: fast load-transient response, adaptive voltage-setting control, capacitor current sensing
相關次數: 點閱:182下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇碩論分析並設計一個利用微分器實現之電容電流偵測器,在不需經過複雜的校正技術而能針對輸出電壓做負載電流資訊的偵測,並且結合本篇提出的快速負載暫態響應技術,在快速電流負載變化的情況中,不同的負載電流變化大小及輸出/輸入電壓轉換比例下,皆能壓抑輸出電壓抖動與回復時間,穩定輸出電壓源品質。此外,在電流控制模式的架構中,透過本篇所提之適應性補償器輸出電壓控制,解決其他應用於電流控制模式的文獻中負載暫態響應能力受限的問題。
    與目前電流模式操作的參考文獻相比,本作可達到近乎最小的輸出電壓抖動與最短的回復時間,並且在不需透過準確的電容電流偵測校正技術之情況下,透過精簡的電路實現而能與其他快速負載暫態響應技術的作品效能相比較。
    所提技術以台積電0.35μm製程實現,整體晶片面積大小為0.96mm2。在1A/2.5ns負載變化之情形下,輕載轉重載及重載轉輕載的電壓抖動大小分別為74mV及65mV回復時間分別為0.8μs及0.5μs。

    This dissertation focuses on a capacitor-current sensor realized by a differentiator. Without complicated calibration mechanism, the capacitor-current sensor can sense the load current change information that reflect on the DC-DC buck converter output voltage, furthermore, combining with the proposed fast transient PWM on-time control, it can suppress transient undershoot, overshoot and settling time in the fast and large load current change condition, regardless of conversion ratio, that stabilizes the quality of output supply voltage. In addition, in the current-mode control architecture, adaptive voltage-setting control (AVSC) technique is proposed to improve the limited load-transient response that implemented in the prior work.
    Comparing with other prior work with current-mode control, this work can achieve near minimized transient undershoot and overshoot as well as settling time. And without complicated calibration mechanism and circuits, the load-transient performance is comparable with other works with calibration. This work is implemented by TSMC 0.35um Mixed-Signal 2P4M Polycide 3.3V process. The chip area is 0.96mm2. In 1A/2.5ns load-step condition, transient undershoot is 74mV while settling time is 0.8us in light-to-heavy load condition and transient overshoot is 65mV while settling time is 0.5us in heavy-to-light load condition.

    摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Organization 4 Chapter 2. Background of the DC-DC Converter 5 2.1 Specification of DC-DC Buck Converters 5 2.1.1 Operation Conditions 6 2.1.2 Steady State Performance Indices 7 2.1.3 Transient State Performance Indices 9 2.2 Analysis of Load-Transient Response 11 2.2.1 Light-to-Heavy Load Transient Response 11 2.2.2 Heavy-to-Light Load Transient Response 14 Chapter 3. System Architecture 16 3.1 Operation of the Adaptive Voltage-Setting Control 16 3.2 Design of the Proposed Capacitor-Current Sensing Tech. 19 3.2.1 Characteristics of Capacitor-Current Information 19 3.2.2 Concept of Capacitor-Current Sensor in the Prior Arts 20 3.2.3 Capacitor-Current Zero-Crossing Detection 23 3.3 Transient PWM On-Time for Load-Transient Response 32 Chapter 4. Circuit Implementation 41 4.1 Power-Stage, Dead-Time Driver and Type-II Compensator 41 4.2 Inductor-Current Sensor w/ Slope Compensation and ZCD 45 4.3 Capacitor-Current Zero-Crossing (IC Z-C) Detector 49 4.4 Transient PWM On-Time Generator 56 4.5 End-Point-Predicted Voltage-Setting Control (EPPVSC) 60 Chapter 5. Layout and Simulation Results 62 5.1 Chip Layout 62 5.2 Simulation Results 63 5.2.1 Pre-Layout Simulation Results 63 5.2.2 Post-Layout Simulation Results 66 5.3 Comparison Table 69 Chapter 6. Conclusion and Future Work 70 Reference 71

    [1] C. Hsieh, et al., “Adaptive Pole-Zero Position (APZP) Technique of Regulated Power Supply for Improving SNR,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2949–2963, Nov. 2008.
    [2] M. Du, et al., “A 5-MHz 91% Peak-Power-Efficiency Buck Regulator With Auto-Selectable Peak- and Valley-Current Control,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1928–1939, Aug. 2011.
    [3] S. Hong, et al., “High Area-Efficient DC-DC Converter With High Reliability Using Time-Mode Miller Compensation (TMMC),” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2457–2468, Oct. 2013.
    [4] A. Grenat , et al., “Adaptive clocking system for improved power efficiency in a 28 nm x86-64 microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 106–107, Feb. 2014.
    [5] “Basic Calculation of a Buck Converter's Power Stage,” Application Report SLVA477B. [Online]. Available: http://www.ti.com/lit/an/slva477b/slva477b.pdf
    [6] J. Kang, et al., “A Time-Domain-Controlled Current-Mode Buck Converter With Wide Output Voltage Range,” IEEE J. Solid-State Circuits, early access
    [7] Y. Huang, et al., “A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 552–568, Feb. 2018.
    [8] C. Huang, et al., “A High-Efficiency Current-Mode Buck Converter With a Power-Loss-Aware Switch-On-Demand Modulation Technique for Multifunction SoCs,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8303–8316, Dec. 2016.
    [9] S. Chien, et al., “A Monolithic Capacitor-Current-Controlled Hysteretic Buck Converter With Transient-Optimized Feedback Circuit,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2524–2532, Nov. 2015.
    [10] P. Wu, et al., “Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446–1455, Aug. 2010.
    [11] S. Lee, et al., “A 0.518mm2 Quasi-Current-Mode Hysteretic Buck DC-DC Converter with 3μs Load Transient Response in 0.35μm BCDMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 214–215, Feb. 2015.
    [12] M. Song, et al., “A 6A 40MHz Four-Phase ZDS Hysteretic DC-DC Converter with 118mV Droop and 230ns Response Time for a 5A/5ns Load Transient,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 80–81, Feb. 2014.
    [13] T. Karnik, et el., “Power Management and Delivery for High-Performance Microprocessors,” in IEEE Design Automation Conference, 2013.
    [14] W. Chen, et al., “Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1525–1539, Jul. 2015.
    [15] W. Chou, et al., “An Embedded Dynamic Voltage Scaling (DVS) System Through 55 nm Single-Inductor Dual-Output (SIDO) Switching Converter for 12-Bit Video Digital-to-Analog Converter,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1568–1584, Jul. 2012.
    [16] Y. Lee, et al., “A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual Loop in Mobile Application Processor,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 64–76, Jan. 2017.
    [17] Y. Huh, et al., “Future Direction of Power Management in Mobile Devices,” in IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2011.
    [18] F. Atallah, et al., “A 7nm All-Digital Unified Voltage and Frequency Regulator Based on a High-Bandwidth 2-Phase Buck Converter with Package Inductors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 316–317, Feb. 2019.
    [19] P. Wang, et al., “An Undershoot/Overshoot-Suppressed Current-Mode Buck Converter with Voltage-Setting Control for Type-II Compensator,” in IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2015.
    [20] K. Fang, “Four-Phase Buck Converter with Load-Transient Optimizer and Capacitor-Current Sensor Calibration,” M. S. thesis, EE, NCKU, Tainan, Taiwan, 2015.
    [21] J. Wibben, et al., “A High-Efficiency DC-DC Converter Using 2nH Integrated Inductors,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 844–854, Apr. 2008

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE