簡易檢索 / 詳目顯示

研究生: 柯舜誌
Shun-Chin-Ke,
論文名稱: 利用統一功率潮流控制器於混合離岸式風場連接至台電簡化系統之穩定度分析
Stability Analysis of the Simplified Taipower System Connected with a Hybrid Offshore Wind Farm Using a UPFC
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 146
中文關鍵詞: 離岸式風場統一功率潮流控制器穩定度台電簡化系統輔助阻尼控制器
外文關鍵詞: Offshore wind farms (OWF), doubly-fed induction generator (DFIG), permanent-magnet synchronous generator (PMSG), unified power flow controller (UPFC), supplementary damping controller (SDC)
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對以雙饋式感應發電機所組成之離岸式風場與以永磁式同步發電機所組成之離岸式風場做整合後,透過統一功率潮流控制器連接至台電簡化系統之架構為研究目標,並比較此類混合離岸式風場採用統一功率潮流控制器做控制之特性與其在系統穩定度改善之效果。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立以雙饋式感應發電機所組成之離岸式風場、以永磁式同步發電機所組成之離岸式風場以及統一功率潮流控制器等模型,並設計統一功率潮流控制器之輔助阻尼控制器。本論文於穩態特性方面,分析風速、海底電纜傳輸線長度與彰濱H負載變動等情況下對系統穩定度特性之影響。在暫態及動態模擬方面,完成了風速變動、轉矩干擾以及彰濱H匯流排發生三相短路故障等模擬結果。由穩態、動態及暫態之模擬結果分析得知,統一功率潮流控制器能夠有效地控制混合離岸式風場連接至台電簡化系統之功率潮流。此外,當統一功率潮流控制器在加入輔助阻尼控制器之後,更能有效改善台電簡化系統連接混合離岸式風場於不同運轉條件下之穩定度。

    This thesis presents the analyzed results of power-flow control and stability improvement of the simplified Taipower System connected with an integrated doubly-fed induction generator (DFIG)-based offshore wind farm (OWF) and permanent-magnet synchronous generator (PMSG)-based OWF using a unified power flow controller (UPFC). The q-d axis equivalent-circuit model is used to establish the models of the studied DFIG-based OWF, the PMG-based OWF, and the UPFC under three-phase balanced loading conditions. Different types of supplementary damping controller of the proposed UPFC are designed. Steady-state characteristics of the studied system under different values of wind speed, transmission length, and loading of Jang-Bin H are examined. Dynamic results and transient simulations of the studied system subject to a wind-speed disturbance, a torque disturbance, and a three-phase fault at the Chang-Bin H are also carried out. It can be concluded from the simulation results that the proposed UPFC joined with the designed supplementary damping controllers is effective in controlling the power flow from OWFs to the simplified Taipower System and improving the stability of the simplified Taipower System connected with an integrated OWF under different operating conditions.

    摘要 I Summary II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 相關文獻回顧 2 1-4 本論文貢獻 7 1-5 研究內容概述 7 第二章 系統數學模型 9 2-1 前言 9 2-2 風速之數學模型 11 2-3 聚集等效風渦輪機之數學模型 13 2-4 旋角控制器之數學模型 16 2-5 雙饋式感應發電機之數學模型 18 2-6 永磁式感應發電機之數學模型 24 2-7 同步發電機之數學模型 30 2-7-1 同步發電機之雙軸模型 30 2-7-2 同步發電機用之激磁機模型 33 2-7-3 同步發電機用之調速機模型 34 2-7-4 同步發電機用之蒸汽渦輪機模型 34 2-8 整合型功率潮流控制器之數學模型 35 2-9 多機系統之網路簡化模型 41 2-9-1 負載等效阻抗 41 2-9-2 節點消除 41 2-9-3 將矩陣轉換至共同參考軸 42 第三章 阻尼控制器之設計 43 3-1 前言 43 3-2 控制器之模型 43 3-3 利用極點安置法設計比例-積分-微分控制器參數 46 3-4 利用留數法設計相位超前/落後補償器參數 50 3-5 線性二次調制器理論 53 第四章 系統之穩態分析 56 4-1 前言 56 4-2 風速改變之穩態分析 56 4-2-1風速改變系統之穩態工作點分析 56 4-2-2風速改變系統之特徵值分析 62 4-3 海底電纜傳輸線長度改變之穩態分析 67 4-3-1 海底電纜傳輸線長度改變系統之穩態工作點分析 67 4-3-2 海底電纜傳輸線長度改變系統之特徵值分析 75 4-4 彰濱H負載阻抗改變之穩態分析 77 4-4-1 彰濱H負載改變系統之穩態工作點分析 78 4-4-2 彰濱H負載改變時系統之特徵值分析 85 第五章 系統之動態與暫態分析 88 5-1 前言 88 5-2 離岸式風場發生風速變動之動態分析 88 5-3 離岸式風場發生轉矩干擾之動態分析 97 5-4 彰濱H匯流排發生三相短路故障之暫態分析 106 5-5 以雙饋式感應發電機為基礎的離岸式風場發生跳機之動態分析 115 5-6以永磁式同步發電機為基礎的離岸式風場發生跳機之動態分析 121 5-7核二發電機發生跳機之動態分析 127 第六章 結論與未來研究方向 133 6-1 結論 133 6-2 未來研究方向 134 參考文獻 136 附錄 系統參數 144

    [1] 余勝雄,我國風力發電現況及展望,永續產業發展雙月刊,第三十五期,2007年10月。
    [2] 經濟部能源局,2014年5月30日,http://www.taiwangreenenergy
    .org.tw/Domain/domain-3.aspx, retrieved date: Jun. 10, 2014.
    [3] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech Conference, vol. 3, Bologna, Italy, Jun. 23-26, 2003.
    [4] P. Ledsma and J. Isaola, “Doubly fed induction generator model for transient stability analysis,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 388-397, Jun. 2005.
    [5] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
    [6] R. G. de Almeida and J. A. P. Lopes, “Participation of doubly fed induction wind generators in system frequency regulation,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 944-950, Aug. 2007.
    [7] R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 Int. Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, Jul. 18-19, 2008, pp. 922-926.
    [8] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Systems, vol. 25, no. 1, pp. 331-340, Feb. 2010.
    [9] L. Wang and G. Z. Zheng, “Analysis of a microturbine generator system connected to a distribution system through power-electronics converters,” IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 159-166, Apr. 2011.
    [10] M. Singh, V. Khadkikar, and A. Chandra, “Grid synchronization with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system,” IET Power Electronics, vol. 4, no. 1, pp. 122-130, Nov. 2011.
    [11] T. J. E. Miller, Reactive Power Control in Electric Systems, New York: John Wiley & Sons, 1982.
    [12] K. Bergmann, B. G. Friedrich, K. Stump, and W. H. Elliott, “Digital simulation, transient network analyzer and field tests of the closed loop control of the Eddy County SVC,” IEEE Trans. Power Delivery, vol. 8, no. 4, pp. 1867-1873, Oct. 1993.
    [13] C. Schauder and H. Mehta, “Vector analysis and control of advanced static var compensators,” IEE Proceeding, Part C, vol. 140, no. 4, pp. 299-306, Jul. 1993.
    [14] C. Schauder and H. Mehta, “Development of 100MVAR static condenser for voltage control of transmission systems,” IEEE Trans. Power Delivery, vol. 10, no. 3, pp. 1486-1496, Jul. 1995.
    [15] P. M. Anderson and R. G. Farmer, Series Compensation of Power Systems, Encinitas, CA: PBLSH! Inc., 1996.
    [16] E. V. Larsen, K. Clark, S. A. Miske, and J. Urbanek, “Characteristics and rating considerations of thyristor controlled series compensation,” IEEE Trans. Power Delivery, vol. 9, no. 2, pp. 992-1000, Apr. 1994.
    [17] L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static synchronous series compensator: A solid-state approach to the series compensation of transmission lines,” IEEE Trans. Power Delivery, vol. 12, no. 1, pp. 406-413, Jan. 1997.
    [18] L. Gyugyi, “Unified power flow control concept for flexible AC transmission systems,” IEE Proceedings, Part C, vol. 139, no. 4, pp. 323-331, Jul. 1992.
    [19] L. Gyugyi, C. D. Schauder, S. L. Williams, T. R. Rietman, D. R. Torgerson, and A. Edris, “The unified power flow controller: A new approach to power transmission control,” IEEE Trans. Power Delivery, vol. 10, no. 2, pp. 1085-1097, Apr. 1995.
    [20] L. Gyugyi, “Dynamic compensation of AC transmission lines by solid-state synchronous voltage sources,” IEEE Trans. Power Delivery, vol. 9, no. 2, pp. 904-911, Apr. 1994.
    [21] C. D. Schauder, L. Gyugyi, M. R. Lund, D. M. Hamai, T. R. Rietman, D. R. Torgerson, and A. Edris, “Operation of the unified power flow controller (UPFC) under practical constraints,” IEEE Trans. Power Delivery, vol. 13, no. 2, pp. 630-639, Apr. 1998.
    [22] A. Nabavi-Niaki and M. R. Iravani, “Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies,” IEEE Trans. Power Systems, vol. 11, no. 4, pp. 1937-1943, Nov. 1996.
    [23] I. Papic, P. Zunko, D. Povh, and M. Weinhold, “Basic control of the unified power flow controller,” IEEE Trans. Power Systems, vol. 12, no. 4, pp. 1734-1739, Nov. 1997.
    [24] K. S. Smith, L. Ran, and J. Penman, “Dynamic modelling of a unified power flow controller,” IEE Proc. Generation, Transmission and Distribution, vol. 144, no. 1, pp. 7-12, Jan. 1997.
    [25] K. R. Padiyar and A. M. Kulkarni, “Control design and simulation of unified power flow controller,” IEEE Trans. Power Delivery, vol. 13, no. 4, pp. 1348-1354, Oct. 1998.
    [26] H. F. Wang, “Damping function of unified power flow controller,” IEE Proc. Generation, Transmission and Distribution, vol. 146, no. 1, pp. 81-87, Jan. 1999.
    [27] H. F. Wang, “Application of modeling UPFC into multi-machine power systems,” IEE Proc. Generation, Transmission and Distribution, vol. 146, no. 3, pp. 306-312, May 1999.
    [28] K. Sreenivasachar, S. Jayaram, and M. M. A. Salama, “Dynamic stability improvement of multi-machine power system with UPFC,” Electric Power Systems Research, vol. 55, no.1, pp. 27-37, Jul. 2000.
    [29] C.-T. Chang and Y.-Y. Hsu, “Design of UPFC controllers and supplementary damping controller for power transmission control and stability enhancement of a longitudinal power system,” IEE Proc. Generation, Transmission and Distribution, vol. 149, no. 4, pp. 463-471, Jul. 2002.
    [30] B. C. Pal, “Robust damping of interarea oscillations with unified power-flow controller,” IEE Proc. Generation, Transmission and Distribution, vol. 149, no. 6, pp. 733-738, Nov. 2002.
    [31] N. Tambey and M. L. Kothari, “Damping of power system oscillations with unified power flow controller (UPFC),” IEE Proc. Generation, Transmission and Distribution, vol. 150, no. 2, pp. 129-140, Mar. 2003.
    [32] E. Gholipour and S. Saadate, “Improving of transient stability of power systems using UPFC,” IEEE Trans. Power Delivery, vol. 20, no. 2, pp. 1677-1682, Apr. 2005.
    [33] T. T. Nguyen and R. Gianto, “Neural networks for adaptive control coordination of PSSs and FACTS devices in multimachine power system,” IEE Proc. Generation, Transmission and Distribution, vol. 2, no. 3, pp. 355-372, May 2008.
    [34] J. Guo, M. L. Crow, and J. Sarangapani, “An improved UPFC control for oscillation damping,” IEEE Trans. Power Systems, vol. 24, no. 1, pp. 288-296, Feb. 2009.
    [35] S. Shojaeian, J. Soltani, and G. A. Markadeh, “Damping of low frequency oscillations of multi-machine multi-UPFC power systems, based on adaptive input-output feedback linearization control,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 1831-1840, Nov. 2012.
    [36] L. Wang, H.-W. Li, and C.-T. Wu, “Stability analysis of an integrated offshore wind and seashore wave farm fed to a power grid using a unified power flow controller,” IEEE Trans. Power Systems, vol. 28, no. 3, pp. 2211-2221, Aug. 2013.
    [37] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, pp. 3791-3795, Dec. 1983
    [38] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [39] S. M. Muyeen, J. Tamura, and T. Murata, Stability Augmentation of a Grid-connected Wind Farm, New York: Springer, 2009.
    [40] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [41] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [42] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Industry Applications, vol. 41, no. 1, pp. 60-67, Jan. 2005.
    [43] A. Mesemanolis, C. Mademlis, and I. Kioskeridis, “Maximum efficiency of a wind energy conversion system with a PM synchronous generator,” in Proc. 2010 Power Generation, Transmission, Distribution, and Energy Conversion Conference, Agia Napa, Cyprus, Nov. 7-10, 2010, pp. 1-9.
    [44] H. Zhang, S. Cao, S. Wang, and F. Yu, “The analysis of steady-state characteristics of doubly-fed induction generator,” in Proc. 2010 IEEE International Advanced Management Science Conference, Chengdu, China, Jul. 9-11, 2010, pp. 195-197.
    [45] W.-S. Kao, C.-T. Huang, and C.-Y. Chiou, “Dynamic load modeling in Taipower System stability studies,” IEEE Trans. Power Systems, vol. 10, no. 2, pp. 907-914, May 1995.
    [46] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [47] P. Kundur, M. Klein, G. J. Rojers, and M. Zwyno, “Applications of power system stabilizers for enhancement of overall system stability,” IEEE Trans. Power Systems, vol. 4, no. 2, pp. 614-622, May 1989.
    [48] K. K. Sen, E. J. Stacey, “UPFC-unified power flow controller: theory, modeling, and applications,” IEEE Trans. Power Delivery, vol. 13, no. 4, pp. 1453- 1460, Oct. 1998.
    [49] M. Klein, G. J. Rogers, and P. Kundur, “A fundamental study of inter-area oscillations in power systems,” IEEE Trans. Power Systems, vol. 6, no. 3, pp. 914-921, Aug. 1991.
    [50] R. Sadikovic, P. Korba, and G. Andersson, “Application of FACTS devices for damping of power system oscillations,” in Proc. IEEE Power Tech conference, St. Petersburg, Russia, Jun. 27-30, 2005, pp.1-6.
    [51] P. K. Pandey, “Analysis and design of multi-stage LQR UPFC,” in Proc. 2010 int. Conf. Power, Control and Embedded Systems(ICPCES), Allahabad, India, Nov. 28-Dec. 1, 2010, pp. 1-6.
    [52] N. G. Hingorani and L. Gyugyi, Understanding FACTS, Piscataway, NJ: IEEE Press, 2000.
    [53] M. S.-Nguyen Thi and L. Wang, “Stability analysis of different offshore wind farms feeding into a large power grid through a hybrid HVDC link,” in Proc. IEEE 22nd Int. Symposium on Industrial Electronics, Taipei, Taiwan, May 28-31, 2013, pp.1-6.
    [54] C.-T. Wu, C.-H. Chang, and L. Wang, “Transient analysis of Jang-Bin wind farm connected to Taiwan Power System,” in Proc. IEEE 2013 CACS Int. Automatic Control Conference, Nantou, Taiwan, Dec. 2-4, 2013, pp.455-461.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE