簡易檢索 / 詳目顯示

研究生: 汪冠銘
Wang, Kuan-Ming
論文名稱: 界面活性劑對壓印用金屬模具電鑄前段製程之影響
Effect of Surfactants on the Electroforming Processed Metallic Mold for Imprinting Technology
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 壓印無電鍍電鑄界面活性劑模具
外文關鍵詞: imprint, electroless plating, surfactant, electroforming, mold
相關次數: 點閱:78下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用金屬取代矽製作壓印模具為解決矽模具易脆且使用壽命不長的方法之一。
    以無電鍍法在被覆S1818光阻之矽晶片進行鎳磷合金層,作為鎳電鑄之電鑄晶種層,製作具微米級圖案之鎳金屬壓印模具。
    添加陽離子界面活性劑於無電鍍鎳鍍浴中以改善鍍層性質,提升無電鍍鎳層在電鑄製程應用上之整體表現。
    本研究以黃光微影之方式製作被覆S1818光阻圖形之矽晶片母模,經過化學溶液前處理、敏化及活化等前處理後,
    在其表面以添加DTAB (Dodecyltrimethylammounium bromide)及CTAB (Cetyltrimethylammonium bromide)兩種陽離子
    界面活性劑之無電鍍鎳液進行無電鍍製程,探討界面活性劑對鍍層在光阻表面成長方式,及鍍層性質之影響,
    最後以電沉積的方式將鎳模增厚,脫模後得到具微米級圖案之鎳金屬壓印模具。
    研究結果顯示,具光阻結構之矽晶片經過HPM(hydrochloric acid and hydrogen peroxide mixture)前處理後,
    利用無電鍍鎳製程將具導電性之鎳磷合金層完整的沉積在光阻及矽晶片表面,鍍層在矽晶片表面之初始成長速率大於
    S1818光阻表面;隨著成長溫度的上升,無電鍍鎳層之電阻率隨之下降。添加DTAB及CTAB於無電鍍鎳鍍浴中,
    幫助氫氣從S1818表面移除,因而增加鎳磷合金層在S1818光阻表面之初始成長速率,其中以在DTAB濃度為3ppm時
    可得到表面平整且無針孔之鍍層。利用鎳電鑄的方式可將鎳沉積在無電鍍鎳層表面使結構增厚;
    以丙酮溶液浸泡可將鎳模具與母模分離,模具圖形完整,以本研究中所使用之設備,可得最小線寬為5μm,
    圖形高度為2μm;經類鑽碳薄膜表面改質之鎳模具可用於高溫壓印,PMMA圖形複製情形良好。經由此研究可知,
    是一個可行且極具有實際應用價值之製程。

    A metallic mould can replace the Si mould to solve the problem that Si mould is too brittle to endure the cyclic imprinting process. Nickel mould was fabricated by nickel electroforming on electroless Ni-P thin film plated on polymer (photoresist Shipley S1818)/Silicon composite material. To improve the surface performance of electroless Ni-P film, cationic surfactants were added in the acidic hypophosphite plating baths.
    The master mould consisting of a polymer (photoresist)/Si composite material was fabricated by photolithography process. Electroless Ni-P film was deposited on master mould by acidic hypophosphite plating baths contain cationic surfactants. The effects of added cationic surfactants, DTAB (Dodecyltrimethylammounium bromide) and CTAB (Cetyltrimethylammonium bromide) in the acidic hypophosphite plating baths on the properties of the resulting electroless Ni-P deposits on the polymer substrate were studied. Then, the metallic imprint mould was fabricated by electroforming on electroless Ni-P film.
    The results show that pretreating polymer/Si surface surfaces with hydrochloric acid and hydrogen peroxide mixture (HPM) was found to enhance the reactivity of electroless Ni-P deposition on polymer/Si master molds. Uniform and glossy Ni-P film was deposited on master mould successfully, and the deposition rate of Ni-P deposited on Si is faster than that on photoresist S1818. As deposition temperature is increased, the deposition rate of Ni-P film is promoted, but the resistivity of Ni-P thin film is dropped. The deposition rate of electroless Ni-P film on S1818 is promoted by adding DTAB and CTAB in the plating baths. Addition of DTAB 3ppm to the plating solution produces the Ni-P deposits with smoother morphology. Pits are not so obvious. Replication of a Ni mold for imprint lithography was demonstrated using Ni electroless plating and Ni electroforming. Fine patterns were successfully replicated using a polymer/Si master mold. The line width is 5 μm, the pitch is 12 μm, and the line depth is 2 μm. Using the replicated Ni mold deposited DLC (Diamond-like carbon)film, the fine pattern is successfully fabricated by the replicated mold. In particular, this process does not need any e-beam evaporation and etching process. It is believed that it is a promising technology to mass-produce micron-scale mold at low costs.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅳ 總目錄 Ⅴ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 序論 1 1-1 前言 1 1-2 研究動機與目的 5 第二章 理論基礎及文獻回顧 6 2-1無電鍍鎳 6 2-1-1 無電鍍鎳簡介 6 2-1-2 無電鍍鎳原理 6 2-1-3 無電鍍鎳層結構 9 2-1-4 無電鍍鎳鍍液組成及特性 11 2-1-5 影響無電鍍鎳析鍍速率之因素 12 2-1-6 基材表面之前處理 14 2-2 界面活性劑 15 2-2-1 界面活性劑簡介 16 2-2-2 界面活性劑之分類 16 2-2-3 界面活性劑在固體表面之吸附現象 17 2-2-4 界面活性劑在無電鍍鎳鍍浴之角色 19 2-3 微影蝕刻技術 23 2-4 電鑄 23 2-4-1 電鑄製程簡介 23 2-4-2 電鑄鎳金屬 26 2-5 熱隆起壓印技術 28 第三章 實驗方法與步驟 30 3-1 實驗流程 30 3-2 具規則S1818光阻圖案之矽晶片的製作方法 31 3-3 在具有規則S1818圖形之矽晶片進行無電鍍鎳製程 32 3-3-1 試片前處理 32 3-3-2 敏化及活化 34 3-3-3 無電鍍鎳 34 3-4 電鑄鎳金屬模具 38 3-4-1 電鑄試片之前處理 38 3-4-2 於無電鍍鎳層表面進行電鑄 40 3-5 高溫壓印製程 42 3-6鍍層及鍍浴性質分析 42 3-6-1 鍍層表面型態分析 42 3-6-2 X射線繞射分析 43 3-6-3 化學成分分析 43 3-6-4 鍍層厚度分析 44 3-6-5 鍍層電組率分析 44 3-6-6 鍍浴與基材皆觸角分析 44 第四章 結果與討論 45 4-1矽及高分子複合基材表面前處理對無電鍍鎳鍍層之影響 45 4-1-1化學溶液前處理對無電鍍鎳鍍層之影響 45 4-1-2敏化及活化時間對無電鍍鎳鍍層之影響 50 4-2 矽及高分子基材之無電鍍鎳行為比較 55 4-2-1無電鍍時間對矽及高分子基材之無電鍍鎳成長厚度之影響 55 4-2-2無電鍍溫度對矽及高分子基材之無電鍍鎳成長速率之影響 61 4-2-3溫度對無電鍍鎳層電阻率之影響 63 4-3 界面活性劑對無電鍍鎳層之影響 67 4-3-1 界面活性劑對鍍液性質之影響 67 4-3-2 鍍層之成分及結構分析 74 4-3-3 界面活性劑對鍍層厚度之影響 74 4-3-4 鍍層表面型態觀察 79 4-4 電鑄金屬模具及壓印製程 88 4-4-1 鎳金屬模具表面型態觀察 88 4-4-2 以鎳金屬模具壓印PMMA 94 結論 96 參考文獻 98

    1.ITRS, International Technology Roadmap for semiconductors Conference. (2003).
    2.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114(1995).
    3.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution”, Science, 272, 85(1996).
    4.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography”, J. Vac. Sci. Technol. B 14, 4129(1996).
    5.S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B 15, 2897(1997).
    6.K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuthera, J. Seekampb, S. Zankovych, C. M. Sotomayor Torres, I.Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H. -C. Scheer, F. Steingrueber, “Polymer stamps for nanoimprinting”, Microelectronic Engineering, 61–62, 393(2002).
    7.M. Colburn, et al., “Step and flash imprint lithography: A new approach to high resolution patterning”, Proc. SPIE:Emerging Lithographic Technologies Ⅲ, 3676(Ⅰ), 379(1999).
    8.Y. Xia, GM Whitesides, Angew. “Soft Lithography”, Angewandte Chemie International Edition. 37, 550(1998).
    9.D. S. Macintyre, Y. Chen, D. Lim, and S. Thoms, “Fabrication of T gate structures by nanoimprint lithography”, J. Vac. Sci. Technol. B 19, 2797(2001).
    10.Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, “Nano-Imprint Lithography Using Replicated Mold by Ni Electroforming”, Jpn. J. Appl. Phys. 41, 4186(2002).
    11.Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold”, J. Vac. Sci. Technol. B 20, 2867(2002).
    12.S. Moon J, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert”, J. Micromech. Microeng. 13, 98(2003).
    13.N. Lee, Y. Kim, S. Kang, and J. Hong, “Fabrication of metallic nano-stamper and replication of nano-patterned substrate for patterned media”, Nanotechnology 15, 901(2004).
    14.K. Ansari, J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam fabrication of nickel stamps for nanoimprint lithography”, Appl. Phys. Lett. 85, 476(2004).
    15.M. Schlesinger, M. Paunovic “Modern Electroplating 4th”, John Wiley & Sons, New York, 667(2000).
    16.G. O. Mallory and J. B. Hajdu, “Electroless plating: fundamentals and applications”, AESF, Orlando, Florida, Chapter 1, (1990).
    17.L. M. Abrantes and J. P. Correia, “On the mechanism of electroless Ni-P plating”, J. Electrochem. Soc., 141 (9), 2356(1994).
    18.D. Barder, “Electroless deposition of metals”, Trans. Inst. Metal Finish. 71 (3), 121(1993).
    19.G. Salvago and P. L. Cavallotti, "Characteristics of the Chemical Reduction of Nickel Alloys with Hypophosphite," Plating, 59 (7), 665(1972).
    20.J. E. A. M. Van Den Meerakker, "On the Mechanism of Electroless Plating. II. One Mechanism for Different Reductants," J. Appl. Electrochem., 11 (3), 365(1981).
    21.H. G. Schenzel and H. Kreye, “Improved corrosion resistance of electroless nickelphosphorus coating”, Plat. Surf. Finish., 77 (10), 50(1990).
    22.K. Parker, “Electroless nickel: state of the art”, Plat. Surf. Finish., 79 (3), 29(1992).
    23.R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect of coating properties”, Plat. Surf. Finish., 83 (11), 65(1996).
    24.黃飛雄, "無電鍍鎳特性與應用," 工業技術85 期, 24(1981)
    25.K-P. Han and Y. Wu, "A Super High Speed Electroless Nickel Plating Process," Trans. Institute Metal Finishing, 74 (3), 91(1996)
    26.J-L. Fang, Y. Wu, and K-P. Han, "Acceleration Mechanism of Thioglycolic Acid for Electroless Nickel Deposition," Plating and Surface Finishing, 84, 91(1997)
    27.楊聰仁, 無電鍍鎳及其應用, 國彰出版社, 台中市, 民國76 年, 第一章、第二章.
    28.X. Chen, J. Yi. , G. Qi, and F. Liu, "Electroless Nickel Bath for Wafer Bumping: Influence of Additives," International Symposium on Electronic Materials and Packaging, 12(2000)
    29.R. L. Cohen, J. F. D'Amico, and K. W. West, “Mössbauer Study of Tin(II) Sensitizer Deposits on Kapton”, J. Electrochem. Soc. 118, 2042(1971).
    30.C. H. de Minjer and P. F. J. v. d. Boom, “The Nucleation with SnCl2-PdCl2 Solutions of Glass Before Electroless Plating”, J. Electrochem. Soc. 120, 1644(1973).
    31.R. L. Meek, “A Rutherford Scattering Study of Catalyst Systems for Electroless Cu Plating”, J. Electrochem. Soc. 122, 1478(1975).
    32.J. F. D'Amico, M. A. De Angelo, J. F. Henrickson, J. T. Kenney, and D. J. Sharp, “Selective Electroless Metal Deposition Using Patterned Photo-Oxidation of Sn(II) Sensitized Substrates”, J. Electrochem. Soc. 118, 1695(1971).
    33.N. Feldstein, and J. A. Weiner, “Surface Characterization of Sensitized and Activated Teflon”, J. Electrochem. Soc. 120, 475(1973).
    34.趙承琛, “界面科學基礎” 復文書局, 台南, 74(1987).
    35.M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley & Sons, New York, 3(1989).
    36.M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley & Sons, New York, Chapter 1(1989).
    37.林清安, 丁幸一, 林德培, 界面活性劑化學, 23(1982)
    38.R. Sharma, “Surfactant Adsorption and Surface Solubilization.” American Chemical Society, Washington DC, 113(1995)
    39.B. H. Chen, L. Hong, Y. Ma, and T. M. Ko, “Effects of Surfactants in an Electroless Nickel-Plating Bath on the Properties of Ni-P Alloy Deposits”, Ind. Eng. Chem. Res., 41 2668(2002).
    40.Hong Xiao著, 羅正忠, 張鼎張譯,半導體製程技術導論,台灣培生教育出版股份有份公司,台灣, 175 (2001)
    41.JA McGeough, MC Leu, KP Rajurkar, A. K. M De Silva, Q. Liu, “Electroforming Process and Application to Micro/Macro Manufacturing”, Annals of the CIRP, 50(2), 499(2001).
    42.馮子昮, 吳以南, 徐惠光, 陳松琪, 徐孝勉, 何生龍, “表面處理工藝手冊”,上海科學技術出版社, 218 (1991).
    43.曾華梁, 吳仲達, 秦月文, 陳鈞武, 呂佩仁, “電鍍工藝手冊”, 機械工業出版社, 176 (1994).
    44.D. Niwa, N. Takano, T. Yamada, and T. Osaka, “Nickel electroless deposition process on chemically pretreated Si(100) wafers in aqueous alkaline solution”, Electrochimica Acta, 48, 1295(2003).
    45.N. Takano, N. Hosoda, T. Yamada, and T. Osaka, “Effect of oxidized silicon surface on chemical deposition of nickel on n-type silicon wafer” Electrochimica Acta, 44, 3743(1999).
    46.N. Takano, D. Niwa, T. Yamada, and T. Osaka, “Nickel deposition behavior on n-type silicon wafer for fabrication of minute nickel dots”, Electrochimica Acta, 45, 3263(2000).
    47.S. Karmalkar, D. Sridhar, and J. Banerjee, “A Novel Activation Process for Autocatalytic Electroless Deposition on Silicon Substrates”, J. Electrochem. Soc., 144, 1696(1997).
    48.S. Furukawa, S. Roy, H. Miyajima and M. Mehregany, “Nickel surface micromaching”, Micro Machine and Human Science, 4-6, 161(1995).
    49.S. Furukawa, and M. Mehregany, “Electroless plating of nickel on silicon for fabrication of high-aspect-ratio microstructures”, Sensors and Actuators A, 56, 261(1996).
    50.L. A. Nagahara, T. Ohmori, K. Hashimoto, and A. Fujishima, “Effects of HF solution in the electroless deposition process on silicon surfaces”, J. Vac. Sci. Techonl. A 11(4), 763 (1993).
    51.T. K. Tsai, and C. G. Chao, “The growth morphology and crystallinity of electroless NiP deposition on silicon”, Applied Surface Science, 233, 180(2004).
    52.T. Watanabe, “Nano-Plating”, Elsevier, 126(2004).
    53.T. Watanabe, “Initail Stage and Micro Structure of Electroless Plating”, J. Surf. Finish. Soc. Jap., 41, 349(1990).
    54.N. Takano, N. Hosoda, T. Yamada, and T. Osaka, “Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution”, J. Electrochem. Soc., 146, 1407(1999).
    55.T. K. Tsai, and C. G. Chao, “The growth morphology and crystallinity of electroless NiP deposition on silicon”, Applied Surface Science, 233, 180(2004).
    56.W.L. Liu, S.H. Hsieh, T.K. Tsai, W.J. Chen, Shin Shyan Wu, “Temperature and pH dependence of the electroless Ni–P deposition on silicon”, Thin Solid Films , 510, 102(2006).
    57.D. N. Rubingh and P. M. Holland, “Cationic Surfactants”, Marcel Dekker, New York, 118(1991).
    58.Blackie, “Handbook of Surfactants”, Chapman and Hall, New York, 25(1991).
    59.M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley & Sons, New York, 256(1989).
    60.M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley & Sons, New York, 58(1989).
    61.G. O. Mallory and J. B. Hajdu, “Electroless plating: fundamentals and applications”, AESF, Orlando, Florida, 105(1990).

    下載圖示 校內:2012-07-26公開
    校外:2017-07-26公開
    QR CODE