簡易檢索 / 詳目顯示

研究生: 鄭宇廷
Cheng, Yu-Ting
論文名稱: 摻雜水與鹵化鉀對兩步法合成鈣鈦礦太陽能電池影響之研究
Study on doping H2O and potassium halide for two - step synthesis of perovskite based solar cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機鈣鈦礦太陽能電池摻雜水及鹵化鉀
外文關鍵詞: Organic based perovskite solar cells, Doping H2O and potassium halide
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦太陽能電池已經成為太陽能電池的新寵兒,歸因於極高的光電 轉換效率,吸引全世界的研究團隊爭相研究,從 2009 年的 3.8 %由日本 Miyasaka 團隊首先將 CH3NH3PbI3 鈣鈦礦材料用於染料敏化太陽能電池 結構中,用鈣鈦礦材料取代原先用於光電轉換的小分子染料,並搭配二 氧化鈦及液態電解液質,至 2014 年由韓國研究團隊 KRICT 將鈣鈦礦太陽 能電池光電轉換效率提升到 20 %,發展的程度已經超越其他的薄膜太陽 能電池,如此高的光電轉換效率因鈣鈦礦獨特的光電特性,包含長的載 子擴散長度,有適合的能帶,高的吸收係數,優異的載子遷移率,我們以兩步旋轉塗佈法製作出結構為 ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al 有機型鈣鈦礦太陽能電池,得到開路電壓為0.79 V,短路電流密度為19.73 mA/cm2,填充因子為56.32 %,光電轉換效率為8.77 % ,並研究水與鹵化鉀摻雜於PbI2前驅層對於效率之影響,實驗結果為當摻雜濃度為2vol%水及4mg/ml的碘化鉀時得開路電壓為0.97 V,短路電流密度為21.34 mA/cm2,填充因子為66.97 %,光電轉換效率為13.86 %提升了近58 %。

    In 2009, Miyasaka et al. used CH3NH3PbI3 to replace organic dyes in
    dye-sensitized solar cells (DSSCs) for the first, where the mesoporous
    titanium oxide (TiO2) and a liquid electrolyte were used. Power conversion
    efficiency (PCE) of 3.8 % was achieved. Power conversion efficiency (PCE)
    close to 20 % has been achieved in both mesoporous structure devices as
    well as photovoltaic heterojunction (PHJ) devices. The highest certified
    efficiency has reached 20.1 % (non-stabilized) by the KRICT in late 2014. It
    took less than five years for PCE of perovskite solar cells to increase from 3.8
    % to above 20 %, while it takes several decades for other kinds of inorganic
    solar cells to achieve this and most photovoltaic materials never reach 20 %
    efficiency. The perovskite solar cells has attracted tremendous research
    attention due to its unique optical properties such as long carrier diffusion
    lengths, appropriate energy gap, high absorption coefficients , excellent
    carrier mobility. We successfully demonstrated that the organic based
    perovskite solar cell whose structure is ITO/PEDOT:PSS/Perovskite/PC61BM/BCP/Al gave a Voc of 0.79 V, a Jsc of 19.73 mA/cm2, a FF of 56.32 %, a PCE of 8.77 % via two-step spin coating process. After fabricating the devices in stable process, we started to study on doping H2O and potassium halide in PbI2 precursor layer. We got the device gave a Voc of 0.97 V, a Jsc of 21.34 mA/cm2, a FF of 66.97 %, a PCE of 13.86 % by doping 2vol% H2O and 4mg/ml KI in PbI2 precursor layer. The power conversion efficiency (PCE) has increased about 58 % after doping 2vol% H2O and 4mg/ml KI in PbI2 precursor layer.

    目錄 中文摘要 I Abstract II Study on doping H2O and potassium halide for two – step synthesis of perovskite based solar cells III 目錄 IX 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 太陽能發展史 2 1-3 太陽光譜 4 1-4 太陽能電池之光電轉換原理 6 1-5 各層材料的特性 7 1-5-1 電洞傳輸層 PEDOT:PSS 7 1-5-2 主動層 鈣鈦礦(Perovskite) 8 1-5-3 電子受體 PC61BM 9 1-5-4 電洞阻擋層 BCP 10 1-6 摻雜材料的特性 11 1-7 鈣鈦礦太陽能電池文獻回顧 13 1-7-1 鈣鈦礦太陽能電池的研究演進 13 1-7-2 與本研究相關的文獻回顧 17 1-8 研究動機 18 第二章 太陽能電池理論基礎 20 2-1 鈣鈦礦太陽能電池工作原理 20 2-1-1 主動層吸收到入射光 21 2-1-2 激子解離成電子電洞 21 2-1-3 電荷由兩端電極收集 21 2-2 鈣鈦礦太陽能電池元件特性分析 22 2-2-1 開路電壓 Voc(Open Voltage) 22 2-2-2 短路電流密度 Jsc(Short-circuit current density) 23 2-2-3 填充因子 FF(Fill factor) 24 2-2-4 光電轉換效率 PCE(Power conversion efficiency) 24 2-2-5 並聯電阻 Rsh(Shunt resistance) 24 2-2-6 串聯電阻 Rs(Series resistance) 25 第三章 鈣鈦礦太陽能電池的製程實驗步驟與儀器量測 26 3-1 鈣鈦礦太陽能電池元件的製程 26 3-1-1 黃光製作 26 3-1-2 元件製程 27 3-1-3 元件封裝 29 3-2 使用的材料 30 3-3 儀器介紹 31 3-3-1 元件效率量測機台 31 3-3-2 紫外光-可見光光譜儀(UV-Visible spectrophotometer) ¬ 32 3-3-3 高解析掃描式電子顯微鏡 (Ultrahigh Resolution Scanning Electron Microscope) 33 3-3-4 多功能 X 光薄膜繞射儀(Multipurpose X-Ray Thin-Film Diffractometer) 34 3-3-5 歐傑電子能譜儀(Auger Electron Spectroscopy ) 36 第四章 實驗結果與討論 37 4-1 摻雜水對鈣鈦礦太陽能電池元件效率的影響 37 4-1-1 初始鈣鈦礦太陽能電池元件的製作 37 4-1-2 摻雜水對電池元件效率的影響 45 4-2 摻雜水與鹵化鉀對電池元件效率的影響 55 4-2-1 摻雜水與氯化鉀對電池元件效率的影響 55 4-2-2 摻雜水與溴化鉀對電池元件效率的影響 58 4-2-3 摻雜水與碘化鉀對電池元件效率的影響 63 4-2-4 摻雜鹵化鉀對電池元件效率的影響 68 第五章 結論與未來規劃 75 5-1 結論 75 5-2 未來規劃 75 參考文獻 76

    [1] K. Leo, "Perovskite photovoltaics: Signs of stability," Nat Nanotechnol, vol. 10, pp. 574-5, Jul 2015.
    [2] P.W. Atkins, Kurzlehrbuch Physikalische Chemie, 2001.
    [3] M.P. Thekaekara, the solar cell constant and solar spectrum measurement from a research aircraft, 1970.
    [4] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova,and R. A. J. Janssen, "Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,"Organic Electronics, vol. 9, pp. 727-734, 2008.
    [5] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
    [6] S. Cook, H. Ohkita, Y. Kim, J. J. Benson-Smith, D. D. C. Bradley, and J. R. Durrant, "A photophysical study of PCBM thin films," Chemical Physics Letters, vol. 445, pp. 276-280, 2007.
    [7] Richard Dylan Cooper, "Effect of Interlayer Insertion into Bilayer Organic Solar Cells," Senior Honors Thesis, May 2011.
    [8] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, et al.,
    "Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells," Materials Science and Engineering: R: Reports, vol. 101, pp. 1-38, 2016.
    [9] Wu, C.-G., et al. (2015). "High efficiency stable inverted perovskite
    solar cells without current hysteresis." Energy Environ. Sci. 8(9):
    2725-2733.
    [10] Boopathi, K. M., et al. (2016). "Synergistic improvements in stability
    and performance of lead iodide perovskite solar cells incorporating salt
    additives." J. Mater. Chem. A 4(5): 1591-1597.
    [11] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
    [12] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, et al., "CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells," Adv Mater, vol. 25, pp. 3727-32, Jul 19 2013.
    [13] B. C. Thompson and J. M. Frechet, "Polymer-fullerene
    composite solar cells," Angew Chem Int Ed Engl, vol. 47, pp. 58-77, 2008.
    [14] Lewis M. Fraas, Larry D. Partain, "Solar Cells and Their
    Applications", Aug 2010.
    [15] A. Moliton and J. M. Nunzi, How to model the behaviour of
    organic photovoltaic cells. Polymer International, 2006. 55(6): p.
    583-600.
    [16] M.A. Green, Solar Cells: Operating Principles, Technology, and System Application, 1982.
    [17] X. Huang, K. Wang, C. Yi, T. Meng, and X. Gong, "Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive
    PEDOT:PSS Hole Transport Layer," Advanced Energy Materials, vol. 6, pp. n/a-n/a, 2016.
    [18] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al.,
    "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
    [19] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, p. 2619, 2014.
    [20] Q. Hao, Y. Chu, X. Zheng, Z. Liu, L. Liang, J. Qi, et al.,
    "Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent," Journal of Alloys and Compounds, vol. 671, pp. 11-16, 2016.
    [21] M. I. El-Henawey, R. S. Gebhardt, M. M. El-Tonsy, and S.
    Chaudhary, "Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells," J. Mater. Chem. A, vol. 4, pp. 1947-1952, 2016.
    [22] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang,
    "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process," Energy Environ. Sci., vol. 7, pp. 2359-2365, 2014.
    [23] Chiang, C.-H., et al. (2016). "One-step fabrication of a mixed-halide
    perovskite film for a high-efficiency inverted solar cell and module."
    J. Mater. Chem. A 4(35): 13525-13533.
    [24] Wang, L., et al. (2016). "Alkali Metal Halide Salts as Interface
    Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based
    Photovoltaic Devices." ACS Appl Mater Interfaces 8(35): 23086-
    23094.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE