簡易檢索 / 詳目顯示

研究生: 杜榮鴻
Du, Rong-Hong
論文名稱: 應用MODIS影像估算潛勢蒸發散量之研究
Applying MODIS Satellite Images to Estimate Potential Evapotranspiration
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 潛勢蒸發散量衛星遙測中級解析度成像分光輻射度計
外文關鍵詞: Remote sensing, MODIS, Potential Evapotranspiration
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   蒸發散量(Evapotranspiration)為水平衡重要之一環。傳統經常利用蒸發皿量測結果或利用相關經驗公式推估結果應用到整個研究集水區,並無法反應出集水區的實際狀況。近年來,由於遙測技術的進步,利用衛星遙測估算蒸發散,可由傳統的「點」觀測拓展至整個集水區的「面」觀測。因此,本研究目的為利用MODIS衛星影像配合Penman-Monteith公式及地表能量平衡模式來估算潛勢蒸發散量,並討論不同估算方法中各氣象因子對潛勢蒸發散估算結果之影響。

      MODIS感測器具有多個波段,可供組合之分析方式較多樣,因此本研究採用MODIS影像進行潛勢蒸發散量推估,首先針對影像進行前處理,利用濾雲後氣象站無雲像元之輻射強度及亮度溫度與地面觀測資料,建立各氣象因子迴歸式,並採用Penman-Monteith、SEBAL及S-SEBI三種估算蒸發散方法,估算台灣西半部各氣象站潛勢蒸發散量,再根據兩種評鑑指標優選適合台灣西半部地區遙測資料估算潛勢蒸發散量之方法。

      研究結果顯示以Penman-Monteith法較適合遙測資料估算潛勢蒸發散量。再者討論不同估算方法中各氣象因子對估算結果之影響,結果發現各方法之主要誤差來源分別為:Penman-Monteith主要來自淨輻射量及風速的影響;SEBAL模式則為淨輻射量及動量粗糙長度;而S-SEBI模式則因影像解析度不足所造成乾濕控制線的不確定性。本文應用MODIS影像估算潛勢蒸發散量之方法,可供相關領域學者未來研究之參考。

     Evapotranspiration is one of the important factors in water budget analysis. Pan observation or the empirical evapotranspiration calculation is traditional used as regional evapotranspiration in Taiwan. Recently, the technique of remote sensing (RS) has been widely applied in hydrology. Hence, the study is aimed to estimate regional potential evapotranspiration using RS based on both Penman-Monteith and surface energy balance methods. The influences of meteorological factors on results of potential evapotranspiration from various methods were also discussed.

     MODIS sensor has many bands to provide more information for analyzing. Therefore, we chose MODIS images to estimate potential evapotranspiration. First, the pre-processing of MODIS images and cloud filtering were first proceeded. Then, the regression relationships of meteorological factors were established by using radiance, brightness temperature and meteorological data observed at ground weather stations. In this study, Penman-Monteith, SEBAL and S-SEBI, were compared for estimating potential evapotranspiration over western Taiwan.

     The validation results from 14 meteorological stations showed that Penman-Monteith method has more reliable estimation than surface energy balance models. We also found that estimation of Penman-Monteith method is majorly influenced by net radiation and wind speed. The SEBAL mode is affected by the net radiation and momentum roughness length. The accuracy of S-SEBI mode is controlled by the radiation and evaporation.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1研究動機與目的 1 1-2文獻回顧 2 1-2-1 Penman-Monteith公式 2 1-2-2 MODIS衛星影像之應用 3 1-2-3地表能量平衡法之發展 5 1-3研究方法概述 7 1-4本文組織架構 7 第二章 研究區域與MODIS影像之處理 10 2-1研究區域與資料蒐集 10 2-2 MODIS感測器簡介 10 2-3 MODIS影像處理 12 2-3-1影像切割 12 2-3-2影像幾何校正 12 2-4濾雲 13 2-4-1濾雲資料來源 13 2-4-2雲霧判別結果 14 第三章 Penman-Monteith蒸發散估算式 23 3-1估算式參數之決定 24 3-2 MODIS影像反推各氣象因子 27 3-2-1氣溫與地溫之推估 28 3-2-2蒸氣壓差之推估 30 3-2-3淨輻射量之推估 31 3-3風速之推估 32 第四章 地表能量平衡演算法(SEBAL) 39 4-1 SEBAL模式簡介 39 4-1-1淨輻射量 39 4-1-2土壤熱通量 40 4-1-3可感熱通量及潛熱通量 42 4-2 MODIS影像推估地表各熱通量 45 第五章 簡易地表能量平衡指數模式(S-SEBI) 49 5-1 S-SEBI模式簡介 49 5-2 MODIS影像推估蒸發散比值Λ 51 第六章 蒸發散估算之結果與比較 60 6-1蒸發散估算結果之比較 60 6-2誤差來源之探討 63 6-2-1 Penman-Monteith公式誤差來源 63 6-2-2 SEBAL模式誤差來源 66 6-2-3 S-SEBI模式誤差來源 68 第七章 結論與建議 86 7-1結論 86 7-2建議 88 參考文獻 90

    參考文獻
    1. 甘俊二,陳清田,陳焜耀,1996,「臺灣地區作物需水量推估模式之合適性研究」,中國農業工程學報,第42卷第2期,第8-19頁。
    2. 王光華,1996,「利用微波估算臺灣地區降雨量之研究」,國立中央大學大氣物理研究所博士論文。
    3. 奚珍妮,2004,「整合GIS與MODIS影像應用於乾旱監測之研究」,國立屏東科技大學森林所碩士論文。
    4. 陳清田,1996,「台灣地區旱作物需水量之推估研究」,國立台灣大學農業工程學研究所碩士論文。
    5. 陳清田,1998,「以 Penman-Monteith法估算區域性參考作物需水量之研究」,嘉義技術學院學報,第58卷,第53-62頁。
    6. 陳姜琦,2002,「應用衛星遙測於區域蒸發散量之估算」,國立成功大學水利及海洋研究所碩士論文。
    7. 陳奕穎,2004,「發展遙測資料反演可感熱與潛熱通量之研究」,國立中央大學水文科學研究所碩士論文。
    8. 曾忠一,1988,「大氣衛星遙測學」,國立編譯館主編,渤海堂文化事業公司印行。
    9. 曾柏凱,2004,「結合衛星遙測估算蒸發散量之應用探討」,國立成功大學水利及海洋研究所碩士論文。
    10. 馮丁樹,1998,「流體機械」,國立台灣大學生物產業機電工程系出版。
    11. 童慶斌、陳主惠,2001,「台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(1/2)及(2/2)」,經濟部水資源局計畫報告。
    12. 劉士銘,2004,「整合GIS與MODIS影像應用於森林火災偵測之研究」,國立屏東科技大學森林所碩士論文。
    13. 蕭葆羲,2002,「風工程」,國立海洋大學河海工程系出版。
    14. 鍾譯靚,2001,「利用衛星遙測估算蒸發散量與熱通量之研究」,國立台灣大學土木工程研究所碩士論文。
    15. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., and Holtslag, A.A.M., 1998, “A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation”, Journal of Hydrology, Vol. 212-213, pp. 198-212.
    16. Bastiaanssen, W.G.M., 2000, “SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey”, Journal of Hydrology, Vol. 229, pp. 87-100.
    17. Bos, M.G., Vos, J., and Feddes, R.A., 1996, “A Simulation Model on Crop Irrigation Water Requirements”, International Institute for Land Reclamation and Improvement (ILRI), publication No. 46, pp. 61-87.
    18. Clothier, B.E., Clawson, K.L., and Printer, P.J., 1986, “Estimation of soil heat flux from net radiation during the growth of alfalfa”, Agricultural and Forest Meteorology, Vol. 37, pp. 312-329.
    19. Choudhury, B.J., Idso, S.B., and Reginato, R.J., 1984, “Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation”, Agricultural and Forest Meteorology, Vol. 39, pp. 283-297.
    20. Choudhury, B.J., 1989, “Estimating evaporation and carbon assimilation using infrared temperature data”, In: Asrar, G. (Eds.), Vistas in modeling, in Theory and Applications of Optical Remote Sensing., Wiley, New York, pp. 628-690.
    21. Czajkowski, K.P., Goward, S.N., Shirey, D., and Walz, A., 2002, “Thermal remote sensing of near-surface water vapor”, Remote Sensing of Environment, Vol. 79, pp. 253-265.
    22. Daughtry, C.S.T., Kustas, W.P., and Moran, M.S., 1990, “Spectral estimates of net radiation and soil heat flux”, Remote Sensing of Environment, Vol. 32, pp. 111-124.
    23. Dyer, A.J., 1974, “A review of flux–profile relationships”, Boundary-Layer Meteorol., Vol. 3, pp. 363-372.
    24. Engman, E.T., and Gurney, R.J., 1991, “Remote Sensing in Hydrology”, Chapman and Hall, London, pp. 225.
    25. Esaias, W. E., Abbott, M. R., and Barton, I., 1998, “An overview of MODIS capabilities for ocean science observations”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, pp. 1250-1265.
    26. Granger, R.J., 1997, “Comparison of Surface and Satellite-Derived Estimates of Evapotranspiration Using A Feedback Algorithm. In: Kite, G.W., Pietroniro, A., Pultz, T.J. (Eds.), Application of Remote Sensing in Hydrology”, Proceedings of the Third International Workshop, NHRI Symposium, No. 17, October, 1996; NASA, Goddard Space Flight Center, Greenbelt, MD, NHRI, pp. 71-81.
    27. Jensen, M.E., Burman, R.D., and Allen, R.G., 1990, “Evapotranspiration and Irrigation Water Requirement”, American Society of Civil Engineers, New York.
    28. Justice, C. O., Vermote, E., and Townshend, J. R. G., 1998, “The moderate resolutionimaging spectroradiometer (MODIS): land remote sensing for globalchange research”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, pp. 1228-1249.
    29. Kustas, W.P., and Daughtry, C.S.T., 1990, “Estimation of the soil heat flux/net radiation ratio from spectral data”, Agricultural and Forest Meteorology, Vol. 49, pp. 205-223.
    30. Lillesand, T.M., and Kiefer R.W., 1994, “Remote Sensing and Image Interpretation”, John Wiley and Sons., pp. 256.
    31. Menenti, M., Bastiaanssen, W.G..M., van Eick, D., and Abl El Karim, M.A., 1989, “Linear relationships between surface reflectance and temperature and their application to map evaporation of groundwater”, Adv. Space Res., Vol. 9, No. 1, pp. 165-176.
    32. Menenti, M., and Choudhury, B.J., 1993, “Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range”, Proceeding of IAHS conference on Land Surface Processes, IAHS Publ., No. 212, pp. 561-568.
    33. Nagler, P.L., Cleverly, J., Glenn, E., and Lampkin, D., 2005, “Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data”, Remote Sensing of Environment, Vol. 94, pp. 17-30.
    34. Narasimhan, B., Srinivasan, R., and Whittaker, A.D., 2003, “Estimation of Potential Evapotranspiration from NOAA AVHRR Satelite”, American Society of Agricultural Engineers ISSN 0883-8542, Vol. 19(3), pp. 309-318.
    35. Nishida, K., Nemani, R.R., Glassy, J.M., and Running, S.W., 2003, “Development of an Evapotranspiration Index From Aqua/MODIS for Monitoring Surface Moisture Status”, IEEE Transactions On Geoscience and Remote Sensing, Vol. 41, No. 2, pp. 493-501.
    36. Oevelen, van, P.J., 1991, “Determination of the available energy for evapotranspiration with remote sensing”, M. Sc. Thesis, Agricultural University of Wageningen, pp. 68.
    37. Petitcolin F., and Vermote E., 2002, “Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data”, Remote Sensing of Environment, Vol. 83, pp. 112-134.
    38. Prata, A.J., 1996, “A new long-wave formula for estimating downward clear-sky radiation at the surface”, Q.J.R.Meteorol.Soc.,Vol. 122, pp. 1127-1151.
    39. Ritzema, H.P., 1994, “Drainage Principles and Applications”, International Institute for Land Reclamation and Improvement (ILRI) publication No. 16, pp. 145-174.
    40. Roerink, G.J., Su, Z., and Menenti, M., 2000, “S-SEBI: A simple Remote Sensing Algorithm to Estimate the Surface Energy Balance”, Phys.Chem. Earth (B), Vol. 25, pp. 147-157.
    41. Su, Z., Menenti, M., and B.J.J.M. Van den Hurk, 1999, “Large area case study with SEBAL:Europe with AVHRR data”, Mesoscale climate hydrology:the contribution of the new observing systems, Report USP-2, Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen University and Research Centre, Wageningen, Netherlands, pp. 63-77.
    42. Turner, J., Marshall, G.J., and Ladkin, R.S., 2001, “An operational, real-time cloud detection scheme for use in the Antarctic based on AVHRR data”, Int. J. Remote Sensing, Vol. 22, No. 15, pp. 3027-3046.
    43. Valor, E., and Caselles, V., 1996 “Mapping land surface emissivity from NDVI: application to European, African, and South American areas.”, Remote Sensing of Environment, Vol. 57, pp. 167-184.
    44. Venturini, V., Bisht, G., Islam, S., and Jiang, L., 2004, “Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida.”, Remote Sensing of Environment, Vol. 93, pp. 77-86.
    45. Xu, C.Y., and Singh, V.P., 2002, “Cross Comparison of Empirical Equation for Calculating Potential Evapotranspiration with Data from Switzerland ”, Water Resources Management, Vol. 16, pp. 197-219.

    下載圖示 校內:立即公開
    校外:2005-06-22公開
    QR CODE