| 研究生: |
劉丞晉 Liu, Cheng-Chin |
|---|---|
| 論文名稱: |
探討 COMSOL 與 ANSYS在單埠薄膜體聲波共振器模擬之應用與整合方法 Investigation of COMSOL and ANSYS Applications in the Simulation and Integration of Single-Port Film Bulk Acoustic Resonators |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 薄膜體聲波共振器(FBAR) 、單埠元件 、COMSOL 、ANSYS Circuit 、外部電路模擬 、諧振頻率分析 |
| 外文關鍵詞: | Film Bulk Acoustic Resonator (FBAR), One-Port Device, COMSOL, ANSYS Circuit, External Circuit Simulation, Resonance Frequency Analysis |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討 COMSOL Multiphysics 與 ANSYS 平台於單埠薄膜體聲波共振器(Film Bulk Acoustic Resonator, FBAR)模擬上的應用與整合方法,並進一步分析外部電路對元件諧振特性的影響。傳統模擬多侷限於壓電區域之建模與理想終端激勵,難以涵蓋實際操作中外部非壓電區域(如傳輸線、接地結構、封裝空腔)所產生之寄生效應。為克服此限制,本研究提出一套跨平台模擬流程:以 COMSOL 建構壓電主體結構並進行頻域分析,匯出一埠阻抗資料(S1P),再於 ANSYS Circuit 中連接外部傳輸線模型,實現非壓電區參數與匹配行為之聯合模擬。
初步模擬結果顯示,單純使用 COMSOL 與整合 ANSYS Circuit 兩種方式下的阻抗響應存在顯著差異,特別是在諧振頻率與匹配行為方面。基於此觀察,進一步設計三組不同外部電路條件,分別改變基板介電常數與傳輸線長度,以對應外部等效電容與電感之變化,進行更深入之比較與分析。模擬結果顯示,傳輸線參數主要改變了串聯諧振頻率的位置,且電感變化造成之頻率漂移更為顯著;反諧振頻率則相對穩定,顯示其受壓電區主導的特性。Smith 圖與 Q 值響應進一步驗證了模擬準確性與匹配效能。綜合而言,本研究所提出之多平台整合方法不僅提升模擬精度,也有助於未來高頻元件設計中更真實地考慮封裝與電路環境的交互效應。
This study investigates a cross-platform simulation method integrating COMSOL Multiphysics and ANSYS Circuit for modeling single-port Film Bulk Acoustic Resonators (FBARs). Traditional FBAR modeling usually focuses only on the piezoelectric region and uses ideal terminal excitations, which fails to reflect parasitic effects introduced by external structures such as transmission lines and packaging. To address this, COMSOL is used to build the FBAR core structure and extract its impedance response, which is then imported into ANSYS Circuit for circuit-level simulation.
The primary finding shows that the impedance and resonance response of the device differs notably between standalone COMSOL simulation and the COMSOL–ANSYS integration, particularly in resonance frequency and matching performance. Based on this observation, three additional configurations—modifying substrate permittivity and transmission line length—are explored to further study external circuit impacts. Results indicate that external inductance and capacitance mainly influence the series resonance frequency, while the anti-resonance frequency and Q value remain relatively stable.
[1] R. Patel, M. S. Adhikari, S. K. Tripathi, and S. Sahu, "Design, Optimization and Performance Assessment of Single Port Film Bulk Acoustic Resonator through Finite Element Simulation," Sensors, vol. 23, no. 21, p. 8920, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/21/8920.
[2] R. Y. Vidana Morales, S. Ortega Cisneros, J. R. Camacho Perez, F. Sandoval Ibarra, and R. Casas Carrillo, "3D Simulation-Based Acoustic Wave Resonator Analysis and Validation Using Novel Finite Element Method Software," Sensors, vol. 21, no. 8, p. 2715, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/8/2715.
[3] P. Jiang et al., "Structure-Size Optimization and Fabrication of 3.7 GHz Film Bulk Acoustic Resonator Based on AlN Thin Film," (in English), Frontiers in Materials, Original Research vol. 8, p. 731611, 2021-October-20 2021, doi: 10.3389/fmats.2021.731611.
[4] C. P. Wen, "Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969, doi: 10.1109/TMTT.1969.1127105.
[5] Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, "Materials, design, and characteristics of bulk acoustic wave resonator: A review," Micromachines, vol. 11, no. 7, p. 630, 2020.
[6] G. Chen et al., "Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer," Scientific Reports, vol. 5, no. 1, p. 9510, 2015/03/31 2015, doi: 10.1038/srep09510.
[7] D. Chen, W. Ren, S. Song, J. Wang, W. Liu, and P. Wang, "The High Q Factor Lateral Field–Excited Thickness Shear Mode Film Bulk Acoustic Resonator Working in Liquid," Micromachines, vol. 7, no. 12, p. 231, 2016. [Online]. Available: https://www.mdpi.com/2072-666X/7/12/231.
[8] C. Buccella, V. De Santis, M. Feliziani, and P. Tognolatti, "Finite element modelling of a thin‐film bulk acoustic resonator (FBAR)," COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 27, no. 6, pp. 1296-1306, 2008.
[9] D. Bo, L. Jian, O. Li, S. Yu, and M. Jin-yi, "Full wave simulation and design of film bulk acoustic wave filters," in MATEC Web of Conferences, 2018, vol. 160: EDP Sciences, p. 01005.
[10] X. Cao, W. Li, Q. Cai, L. Zhou, and Y. Zhu, "Parasitic Effects Analysis and Equivalent Circuit Modeling of Tapered Serpentine Interconnects of On-chip FBAR up to 67GHz," in 2024 Photonics & Electromagnetics Research Symposium (PIERS), 21-25 April 2024 2024, pp. 1-5, doi: 10.1109/PIERS62282.2024.10618097.
[11] X. Zou, Z. Wang, F. Yang, and Y. Gu, "PMBVD Model Parameter Extraction and Optimization for Film Bulk Acoustic Resonator," in 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM), 2022: IEEE, pp. 278-282.
[12] J. Wang, X. Zhang, and T. Yang, "An Extended Mason Model for Spurious-Mode Modeling of High Q FBAR Resonators," in 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, 11-16 June 2023 2023, pp. 251-254, doi: 10.1109/IMS37964.2023.10188134.
[13] B. Panchal, A. Bhadauria, and S. Varghese, "3D FEM Simulation and Analysis of Fractal Electrode-Based FBAR Resonator for Tetrachloroethene (PCE) Gas Detection," Fractal and Fractional, vol. 6, no. 9, p. 491, 2022. [Online]. Available: https://www.mdpi.com/2504-3110/6/9/491.
[14] COMSOL AB. "Thin-Film BAW Resonator (3D with Equivalent Circuit)." COMSOL Multiphysics® v6.3, COMSOL AB, Stockholm, Sweden. https://www.comsol.com/model/thin-film-baw-resonator-3d-with-equivalent-circuit (accessed May 9, 2025).
[15] Y. Gao, B. Zhou, Y. He, and W. J. He, "Electromagnetic compatibility analysis method for FBAR devices," Applied Mechanics and Materials, vol. 719, pp. 452-460, 2015.
[16] C. C. W. Ruppel, "Acoustic Wave Filter Technology–A Review," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 9, pp. 1390-1400, 2017, doi: 10.1109/TUFFC.2017.2690905.
[17] S. Mahon and R. Aigner, "Bulk acoustic wave devices–why, how, and where they are going," in CS Mantech Conference, 2007, pp. 15-18.
[18] H. Campanella, Acoustic wave and electromechanical resonators: concept to key applications. Artech House, 2010.
[19] M. D. Terzieva, "Overview of bulk acoustic wave technology and its applications," Electrotechnica & Electronica (E+ E), vol. 51, 2016.
[20] N. Nor, N. Ahmad, N. Khalid, M. Isa, S. Isa, M. Ramli, and S. Kasjoo, "The influence of design parameters on the performance of FBAR in 15–19 GHz," in AIP conference proceedings, 2018, vol. 2045, no. 1: AIP Publishing.
[21] D. A. Feld, R. Parker, R. Ruby, P. Bradley, and S. Dong, "After 60 years: A new formula for computing quality factor is warranted," in 2008 IEEE Ultrasonics Symposium, 2008: IEEE, pp. 431-436.
[22] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics. John wiley & sons, 2000.
[23] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals. Elsevier, 2005.
[24] P. Dineva et al., Piezoelectric materials. Springer, 2014.
[25] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: a study in mundane physics: Springer, 2006, pp. 15-64.
[26] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices. 1988.
[27] C. Allison. "How to use Simulation to Design and Optimize FBARs." https://onscale.com/how-to-use-simulation-to-design-and-optimize-fbars/ (accessed May 28, 2025).
[28] J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, "Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system," in 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121), 22-25 Oct. 2000 2000, vol. 1, pp. 863-868 vol.1, doi: 10.1109/ULTSYM.2000.922679. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/922679
[29] R. Patel, D. Bansal, V. K. Agrawal, K. Rangra, and D. Boolchandani, "Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator," Superlattices and Microstructures, vol. 118, pp. 104-115, 2018/06/01/ 2018, doi: https://doi.org/10.1016/j.spmi.2018.04.001.
[30] J. Barros and R. I. Diego, "On the use of the Hanning window for harmonic analysis in the standard framework," IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 538-539, 2006, doi: 10.1109/TPWRD.2005.852339.