簡易檢索 / 詳目顯示

研究生: 黃柏翰
Huang, Po-Han
論文名稱: 以亮度梯度實現三維顏面模型之自動網格分割
Automated Mesh Generation based on Intensity Gradient for 3D Facial Model Reconstruction
指導教授: 鄭國順
Cheng, Kuo-sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 58
中文關鍵詞: 陰影造形法網格產生Delaunay三角化法
外文關鍵詞: Shape from Shading, Delaunay Triangulation, Mesh Generation
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立好的立體臉部模型是整形外科手術模擬所不可缺少的,這類的手術模擬可以應用在顱顏疾病或咬合不正的疾病;手術模擬重視物體變形的即時性及準確性,而簡化資料量及建立有限元素模型可以達到這些目的。其中陰影造形法是目前重建人臉立體資料的方法中,較安全且較便宜的一個方法。
    陰影造形法首先對物體從數個不同的光源位置拍攝相片,再根據照片上的亮度梯度值,從二維的照片重建出物體的立體影像。由Lee 和 Kuo所提出的陰影造形法,其特點是準確度高但是計算時間長且資料量過大,改善他們方法中的三角形網格模型,可以解決這個問題。
    我們的研究首先對一人臉從四個不同的光源角度拍攝照片,用Otsu的方法取閥值後,將四個影像聯集,把我們的有興趣的區域選取出來。再來將四張相片的影像做平均,可以得到一個近似光源在正中央的影像。將影像做平滑濾波以後,可以根據亮度梯度值的大小,初步將臉分成三大區塊,再使用形態學的運算子進一步來處理這三大區塊。然後根據每個區塊的亮度梯度值,決定灑點密度後,灑方格點,接下來使用Delaunay三角化法,可以得到人臉網格。

    It is important to have a good 3D human face model in plastic surgery simulation. The surgery simulation can be applied on cranial-facial disease or malocclusion. Real-time and accuracy are important goals in developing surgery simulation system. To reduce data set and to build a finite element model can achieve these goals. Shape from shading is cheaper and safer above the methods of reconstruct 3D human face data.
    At the beginning shape from shading acquire the image of the object from several light source positions. Next we reconstruct the object’s 3D image from the 2D pictures according the illumination gradient of the pictures. The method of shape from shading proposed by Lee and Kuo has the characteristic of high accuracy but high computation time and huge storage data set. To improve the triangular mesh model in their method can solve the problem.
    Our research firstly acquires the face image from four different light source positions. After applying the Otsu’s thresholding method, we continuum the four images to find out the region of interest. Next we average the images of the four pictures; we can get the image that is approximately light source in the central. After smoothing the image, we can set the image into 3 areas based on illumination gradient initially. Then we apply morphological operator to deal with these 3 areas. After this, we determine the nodes distribution density and distribute grid nodes based on the illumination gradient of each area. Next we use Delaunay triangulation to get the mesh of human face.

    Contents Chinese Abstract i Abstract ii Acknowledgment iii Contents iv List of Tables vi List of Figures vii Chapter 1: Introduction 1 1.1 Background 1 1.1.1 Cranial-Facial Disease 1 1.1.2 Serious Malocclusion 2 1.1.3 The Surgery Simulation for Cranial-Facial Disease and Orthognathics 3 1.1.4 The Major Method for 3D Reconstruction 5 1.1.5 Introduction of Shape from Shading (SFS) 6 1.2 Reviews of Methods for Mesh Generation 10 1.2.1 Delaunay Triangulation 11 1.3 Motivation and Purposes 12 Chapter 2: Methods 14 2.1 Image Acquisition 14 2.1.1 Four Light Positions 14 2.1.2 Environment Control 17 2.1.3 Head Fixing and Picture Information 17 2.2 Region of Interest Finding 18 2.2.1 Otsu Thresholding 18 2.2.2 Four Thresholding Images "OR" 19 2.2.3 Discrete Pixels Removing 20 2.2.4 Ear Removing 24 2.2.5 Contour Selection 24 2.3 Image Smoothing 25 2.3.1 Average of the Four Images 25 2.3.2 Gaussian Filter 26 2.4 Divide the ROI into 3 Areas based on Illumination Gradient 27 2.4.1 Prewitt Operator 27 2.4.2 Morphological Operator 29 2.5 Nodes Distribution 34 2.6 Delaunay Triangulation 36 Chapter 3: System Desciption 38 3.1 Hardware Design 38 3.1.1 Environment Control 38 3.1.2 Image Acquisition System 38 3.2 Software 40 Chapter 4: Results and Discussion 41 4.1 10 Acquired Faces 41 4.2 Generated Meshes of Human Face 41 4.2.1 The Generated Meshes of Human Face 41 4.2.2 The Analysis of the Least Angle 46 4.3 Error Analysis of A Simulated 3D Face 48 4.4 Discussion 51 Chapter 5: Conclusions and Prospects 52 5.1 Conclusions 52 5.2 Prospect 53 References 54

    References:
    [1] Web site of Noordhoff Craiofacial Foundation. http://ncf.org.tw/index1.htm
    [2] J. P. Reyneke, et. al., Introduction to Orthognathic Surgery: A Color Atlas, Ishiyaku EuroAmerica, Inc. 1991.
    [3] R. S. Haluck, R. L. Marshall, T. M. Krummel, and M. G. Melkonian, “Are surgery training programs ready for virtual reality? A survey of program directors in general surgery,” Journal of the American College of Surgeons, vol. 193, pp. 660-665, 2001.
    [4] H. Delingette, “Toward realistic soft-tissue modeling in medical simulation,” Proceedings of the IEEE, vol. 86, no. 3, 1998.
    [5] M. Bro-Nielsen, “Finite element modeling in surgery simulation,” Proceedings of the IEEE, vol. 86, no. 3, 1998.
    [6] Web site of The Smile Train. http://www.smiletrain.org/
    [7] D. M. Sarver, Esthetic Orthodontics and Orthognathic Surgery, Mosby: New York, 1998.
    [8] H. H. S. Ip, C. S. B. Kot ,and J. Xia, “Simulated patient for orthognathic surgery,” Proceedings on Computer Graphics International, pp. 239-245, 2000.
    [9] Y. Aoki and S. Hashimoto, “Adaptive head modeling system and its application,” IEEE International Conference on Signal Processing Proceedings, vol. 2, pp. 1237-1244, 2000.
    [10] A. G. Bors, E. R. Hancock ,and R. C. Wilson, “Terrain modeling in synthetic aperture radar images using shape-from-shading,” 15th International Conference on Pattern Recognition, vol. 1, pp. 798-801, 2000.
    [11] G. J. Salamo and T. Jakobs, “Laser pointers: Are they safe for use by children?” Augmentative and Alternative Communication, vol. 12, pp. 47-51, 1996.
    [12] Y. Z. Wen and R. Chellappa, “SFS based view synthesis for robust face recognition,” 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 285-292, 2000.
    [13] C. H. Q. Forster and C. L. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” Proceedings XIII Brazilian Symposium on Computer Graphics and Image Processing, pp. 90-96, 2000.
    [14] T. Okatani and K. Deguchie, “Reconstructing shape from shading with a point light source at the projection center: Shape reconstruction from an endoscope image,” Proceedings of the 13th International Conference on Pattern Recognition, vol. 1, pp. 830-834, 1996.
    [15] K. Deguchi, “Shape reconstruction from endoscope image by its shadings,” IEEE Internation Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 321-328, 1996.
    [16] B. L. Craine, E. R. Craine, C. J. O’Toole and J. Qiang, “Digital imaging colposcopy: Corrected area measurements using shape-from-shading”, IEEE Transactions on Medical Imaging, vol. 17, no. 6, pp. 1003-1010, 1998.
    [17] S. M. Yamany, A. A. Farag, D. Tasman ,and A. G. Farman, “A 3-D reconstruction system for the human jaw using a sequence of optical images,” IEEE Transactions on Medical Imaging, vol. 19. no. 5. pp. 538-547, 2000.
    [18] S. M. Yamany and A. A. Farag, “A system for human jaw modeling using intra-oral images,” IEEE Proceedings of the 20th Annual International Conference on Enginerring in Medicine and Biology Society, vol. 2, pp. 563-566, 1998.
    [19] Q. Zheng and R. Chellappa, “Estimation of illuminant direction, albedo, and shape from shading,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 7, pp. 680-702, 1991.
    [20] K. M. Lee and C.-C. Jay Kuo, “Shape from shading with a linear triangular element surface model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 2, pp. 815-822, 1993.
    [21] M. Bichsel and A. P. Pentland, “A simple algorithm for shape from shading,” IEEE Proceedings of Computer Vision and Pattern Recognition, pp. 459-465, 1992.
    [22] A. P. Pentland, “Local shading analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 170-187, 1984.
    [23] C. H. Lee and A. Rosenfeld, “Improved methods of estimating shape from shading using the light source coordinate system,” Artificial Intelligence, vol. 26, pp. 125-143, 1985.
    [24] P. S. Tsai and M. Shah, “Shape from shading using linear approximation,” Journal of Image and Vision Computing, vol. 12, no. 8, pp. 487-498, 1994.
    [25] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape from shading: A survey,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 690-706, 1999.
    [26] K. Ho-Le, “Finite element mesh generation methods: A review and classification,” Computer-Aided Design, vol. 20, no. 1, pp. 27-38, 1998.
    [27] P. L. George, Automatic Mesh Generation: Application to Finite Element Methods. WILEY: New York, 1991.
    [28] J. Faiz, “Automatic finite-element mesh generation using auto-cad”, IEEE Transactions on Education, vol. 41. no. 4, pp. 325-330, 1998.
    [29] P. J. Green and R. Sibson, “Computing Dirichlet tessellations in the plane,” The Computer Journal, vol. 21. pp. 168-173, 1978.
    [30] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,” ACM Transactions on Graphics, vol. 4, no. 2, pp. 74-123, 1985.
    [31] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorithmica, vol. 2, pp. 153-174, 1987.
    [32] K. M. Lee and C.-C. Jay Kuo, “Shape reconstruction from photometric stereo,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Proceedings, pp. 479-484, 1992.
    [33] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-9, no. 1, pp. 62-66, 1979.
    [34] Y. Fujiwara and H. Sawai, “Evolutionary computation applied to mesh optimization of a 3-D facial image,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, 1999.

    無法下載圖示 校內:2003-08-08公開
    校外:2101-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE