簡易檢索 / 詳目顯示

研究生: 汪俊宏
Wang, Jung-Hong
論文名稱: 軋鋼廠直流馬達故障訊號預警之模擬分析
Simulations and Analysis of DC Motor Fault-Signal Forewarning of a Steel Plant
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 74
中文關鍵詞: 直流馬達故障預警
外文關鍵詞: DC Motor, Fault Diagnosis
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨係依軋鋼廠直流馬達模擬結果及量測數據之分析,期能預知直流馬達可能發生之故障,進而即時予以適當檢修維護,以確保系統之正常運轉,其中本文之方法,乃先依軋鋼廠裝置系統中之各項電機元件,予以建立模式,續依系統單線圖將各項模式予以連接整合,且對於軋鋼廠之負載變動、供電品質不良、軸承偏心及轉子線圈層間短路等,均予以執行模擬測試,據以評估馬達故障發生之機率。此外本文並將所擷取之資料予以特徵值呈現,輔以類神經網路之助,以提昇故障預警判斷效能,又為驗證本文所提之檢視方法,並經由量測信號予以對照模擬運轉結果,以佐證本文於馬達運轉故障監視研究施行之可行性。

    In this thesis, simulations and measurements of DC motors of a steel plant have been carried out in order to develop a forewarning system such that the predictive maintenance can be better realized. In the method, each component of the steel devices was first individually formulated. Then, after connecting each model through a one-line diagram, the integrated scheme was validated through different scenarios, including load variations, low power-quality, bearing bias and shorting of a stator phase winding. It was expected that the fault probability can be prudently evaluated through the scenarios investigated. In the mean time, for each acquired data, they were presented by a feature value in order to facilitate the neural network training, hence anticipating the fault forewarning performance can be also significantly upgraded. Furthermore, test results of this proposed approach have been compared with the measurement data so as to better confirm the feasibility of the method applied for the motor-fault monitoring study.

    中文摘要 I 英文摘要 II 致 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究方法 3 1.3 論文架構 4 第二章 直流馬達運轉之模擬及相關演算法 5 2.1 直流馬達之動態數學模式 5 2.1.1 直流馬達之基本原理 5 2.1.2 直流馬達之電路模型 7 2.1.3 直流馬達之模擬程序 8 2.2 速度控制理論 10 2.3 直流馬達之整流器控制 12 2.3.1 整流器控制 12 2.4 直流馬達故障之數學模式 15 2.4.1 轉子軸承偏心 15 2.4.2 轉子線圈層間短路 17 2.5 能量區間 19 2.6 快速傅立葉轉換 21 第三章 類神經網路及特徵訊號之建立 24 3.1 類神經網路簡介 24 3.2 倒傳遞類神經網路 24 3.3 特徵訊號擷取 28 3.4 建構倒傳遞類神經網路 30 3.5 故障狀態之診斷標準 34 第四章 模擬結果 37 4.1 直流電機及相關元件模擬 37 4.1.1 直流電動機模擬 37 4.1.2 直流電動機啟動模擬 38 4.1.3 直流電動機運轉系統模擬 40 4.1.4 模擬結果 42 4.1.5 實際波形比對 44 4.2 供電品質不良之影響分析 47 4.2.1 供電品質不良模擬 47 4.2.2 類神經網路分析結果 49 4.3 負載變動之影響分析 52 4.3.1 負載變動模擬 52 4.3.2 類神經網路分析結果 54 4.4 轉子軸承偏心之影響分析 57 4.4.1 轉子軸承偏心模擬 57 4.4.2 類神經網路分析結果 60 4.5 轉子線圈層間短路之影響分析 62 4.5.1 轉子線圈層間短路模擬 62 4.5.2 類神經網路分析結果 65 第五章 結論與未來研究方向 67 5.1 結論 67 5.2 未來研究方向 68 參考文獻 69 作者簡介 74

    [1] 中國鋼鐵股份有限公司, http://www.csc.com.tw
    [2] S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors-A Review”, IEEE Transactions on Energy Conversion, Vol. 20, No. 4, pp. 719-729, December 2005.
    [3] http://www.mathworks.com/product/matlab
    [4] http://www. mathworks.com/product/simulink
    [5] M. Hajiaghajani, H. A. Toliyat, and M. S. Panahi, “Advanced Fault Diagnosis of a DC Motor”, IEEE Transactions on Energy Conversion, Vol. 19, No. 1, pp. 60-65, March 2005.
    [6] M. A. Awadallah, and M. M. Morcos, “Application of AI Tools in Fault Diagnosis Machines and Drives-An Overview”, IEEE Transactions on Energy Conversion, Vol. 18, No. 2, pp. 245-251, June 2005.
    [7] 葉怡成, 類神經網路模式應用與實作, 儒林圖書有限公司, 民國九十三年九月.
    [8] P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines, Clarendon Press, Oxford, 1993.
    [9] M. S. Sarma, Electric Machines: Steady-State Theory and Dynamic Performance, Brooks Cole, May 1994.
    [10] B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, New York, U.S.A., 2002.
    [11] S. Chapman, Electric Machinery Fundamentals, Fourth Edition, McGraw Hill, New York, U.S.A., 2005.
    [12] C. M. Ong, Dynamic Simulation of Electric Machinery Using Matlab/Simulation, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A., 1997.
    [13] H. Jin, “Behavior-Mode Simulation of Power Electronic Circuits”, IEEE Transactions on Power Electronics, Vol. 12, No. 3, pp. 443-452, May 1997.
    [14] D. O'Kelly, Performance and Control of Electrical Machines, McGraw-Hill, 1991.
    [15] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice Hall, 2001.
    [16] Electro-Craft Corporation, DC Motors, Speed Controls, Servo Systems, including Optical Encoders, Hopkins, MN, 1980.
    [17] A. J. M. Cardoso and E. S. Saraiva, “Condition Monitoring of Variable Speed Drive System”, in Proceeding of the IEE International Conference on Power Electronics and Variable Speed Drives, IEE Conference Publication Number 324, pp. 519-522.
    [18] A. J. M. Cardoso and E. S. Saraiva, “Fault Diagnosis in Electrical Drives and Systems”, Proceedings of the 1990 Electrical Drive Symposium, pp. 71-77, 1990.
    [19] A. J. M. Cardoso and E. S. Saraiva, “Condition Monitoring of Current Source Inverter-Fed Induction Machines”, Proceedings of the 1990 Conference on Power Electronics and Motion Control, Vol. 3, pp. 744-748.
    [20] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Computation Systems Incorporated, 1992.
    [21] R. E. Ziemer and W. H. Tranter, Principles of Communications-Systems Modulation and Noise, John Wiley & Sons, Inc., U.S.A., 2002.
    [22] H. A. Toliyat, and N. A. Al-Nuaim, “Simulation and Detection of Dynamic Air-Gap Eccentricity in Salient Pole Synchronous Machines”, IEEE Transactions on Industrial Application, Vol. 35, pp. 86-93, January/February 1999.
    [23] H. A. Toliyat, M. S. Areffen, and A. G. Parlos, “A Method for Dynamic Simulation and Detection of Air-Gap Eccentricity in Induction Machines”, IEEE Transactions on Industrial Application, Vol. 32, pp. 910-918, July/August 1996.
    [24] S. P. Verma, and R. Natarajan, “Effect of Eccentricity in Induction Motors”, International Conference on Electric Machinery, Budapest, Hungry, pp. 930-933, September 1982.
    [25] A. Stravou, and J. Penman, “The On-Line Quantification of Air-Gap Eccentricity in Induction Machines”, in Proc. ICEM’94, Vol.2, Paris, France, pp. 261-266, September 1994.
    [26] D. G. Dorrel, W. T. Thomson, and S. Roach, “Analysis of Air-Gap Flux Current and Vibration Signals as a Function of Static and Dynamic Air-Gap Eccentricity in 3-phase Induction Motors”, in Conf. Rec. IEEE-IAS Annual Meeting, Lake Buena Vista, Florida, U.S.A., October 1995, pp. 563-570.
    [27] W. T. Thomson, D. Rankin, and D. G. Dorrell, “On-line Current Monitoring to Diagnose Airgap Eccentricity in Large Three-Phase Induction Motors-Industrial Case Histories Verify the Predictions”, IEEE Transactions on Energy Conversion, Vol. 14, pp. 1372-1378, December 1999.
    [28] T. J. Sobczyk, C. Tassoni, and P. Vas, “Models for Induction Motors with Air-Gap Asymmetry for Diagnostic Purposes”, in Proc. ICEM’96, Vol. 2, Vigo, Spain, September 1996, pp. 79-84.
    [29] G. C. Stone, E. A. Boulter, I. Culbert, and H. Dhirani, Electric Insulation for Rotating Machines, Piscataway, New Jersey, 1994.
    [30] A. G. Parlos, K. Kim, and R.M. Bharadwaj, “Sensorless Detection of Induction Motor Failures”, in Proc. SDEMPED 2001, September 2001, pp. 145-151.
    [31] R. R. Schoen, T. G. Habetler, F. Kamran, and R. G. Bartheld, “Motor Bearing Damage Detection using Stator Current Monitoring”, IEEE Transactions on Industry Applications, Vol. 31, pp. 1274-1279, November/December 1995.
    [32] F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, “AI Techniques in Induction Machines Diagnosis including the Speed Ripple Effect”, IEEE-IAS Annual Meeting, pp. 655-622, October 1996.
    [33] F. Filippetti, G. Franceschini, C. Tassoni, A. Ometto, and S. Meo, “A Simplified Model of Induction Motor with Stator Shorted Turns Oriented to Diagnostics”, Proc. ICEM’96, Vol. 3, Vigo, Spain, pp. 410-413, September 1996.
    [34] D. Sauter, F. Hemelin, and H. Noura, “Fault Diagnosis and Accommodation in Dynamic Systems; Application to a DC Motor”, Proceeding of the American Control Conference, Philadelphia, Pennsylvania, June 1998.
    [35] P. C. Krause, O. Wasynczuk, and S. Sudhoff, Analysis of Electric Machinery, John Wiley & Sons, U.S.A., 2002.
    [36] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, New Jersey, U.S.A., 1999.
    [37] 羅華強, 類神經網路-Matlab 的應用, 高立圖書有限公司, 民國九十四年五月.
    [38] F. Filippetti, G. Francechini, C. Tassoni, and P. Vas, “Recent Developments of Induction Motor Drives Fault Diagnosis Using AI Techniques”, IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp. 994-1004, October 2000.
    [39] J. B. Kliman, and J. Stein, “Methods of Motor Current Signature Analysis”, Electric Machinery and Power System, No. 20, pp. 455-463, 1992.
    [40] S. Farag, R. G. Bartheld, and T. G. Habetler, “An Integrated On-line motor protection system”, IEEE-IAS Annual Meeting, Denver, CO, pp. 117-122, October 1994.
    [41] P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. Oxford, United Kingdom, 1993.
    [42] M. Cirrincione, S. E. Potenza, and C. N. Ricerche, “Control and Diagnosis of Electrical Drives: Some Applications by Using Neural Networks”, Italy, 1998.
    [43] M. Y. Chow, “The Advantages of Machine Fault Detection using Artificial Neural Network and Fuzzy Logic Technologies”, Proceedings of the IEEE International Conference on Industrial Technology, pp. 83-87, 1994.
    [44] B. Li, M. Y. Chow, Y. Tipsuwan, and J. C. Hung, “Neural-Network-Based Motor Rolling Bearing Fault Diagnosis”, IEEE Transactions on Industrial Electronics, Vol. 47, pp. 1060-1069, 2000.

    無法下載圖示
    2057-06-27公開
    電子論文及紙本論文均尚未授權公開
    QR CODE