簡易檢索 / 詳目顯示

研究生: 黃思銘
Huang, Sz-Ming
論文名稱: 以固態法合成無鉛壓電材料(Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3應用於壓電加速規與織構化陶瓷之研究
The synthesis of (Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3 lead free ceramics using conventional and template-assist method for piezoelectric accelerometer applications
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 壓電特性無鉛陶瓷加速規模板晶粒成長法織構化陶瓷
外文關鍵詞: Piezoelectric, Lead-free, Accelerometer, TGG, Texture
相關次數: 點閱:64下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於以無鉛壓電材料製備兩種形式的壓電加速規,分別為壓縮式和鈸型兩種型態;以及透過模板晶粒成長法(TGG)進行織構化陶瓷的製備。
    壓電加速規實驗主要透過靈敏度與線性度及頻寬的分析,探討材料特性以及結構差異對加速規性能的影響;織構化陶瓷實驗部分主要探討改變模板參雜量對於材料特性之影響,利用XRD與TOPAS軟體進行相分析,得到晶格取向度以及相組成比例,並透過SEM拍攝材料顯微結構,確認模板能促進晶格成長。
    從本實驗中得到以下的重要結果: (一) 壓電加速規靈敏度受材料d33影響最大。
    (二) 鈸型加速規擁有較高的靈敏度,使用頻率範圍較窄;環形壓縮式加速規靈敏度較低但使用頻寬較高。(三) 無鉛壓電加速規能實際應用於馬達震動。(四)模板摻雜量於5 %時,有較佳的材料密度與最高的織構取向度,擁有有較佳的電特性。

    SUMMARY
    Lead-free piezoelectric (Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3 (NKLNTS) ceramics were synthesized by conventional mixed oxide method. The ceramics which had an electromechanical coupling factors kp = 45.06% and a piezoelectric constant d33 = 300pC/N were used to fabricate piezoelectric accelerometer and textured study. Two types of piezoelectric accelerometers, assembled with NKLNTS piezoelectric elements, were examined their sensitivity, linearity, frequency range and compared with the PZT ceramic accelerometer in same structures. Textured ceramics were synthesized by template grain growth (TGG). The main propose of this study is to fabricate piezoelectric accelerometer

    Keyword: Piezoelectric, Lead-free ceramics, Accelerometer, TGG ,Texture

    中文摘要 I Extend Abstratct II 致謝 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1前言 1 1-2 研究背景與文獻回顧 3 1-2-1 無鉛壓電材料研究背景 3 1-2-2 織構化陶瓷的研究背景 5 1-2-3 加速規的研究背景及用途 6 第二章 基礎理論與文獻回顧 11 2-1壓電材料 11 2-1-1 正壓電效應 11 2-1-2 逆壓電效應 12 2-1-3 壓電單晶體 12 2-1-4 壓電多晶體 13 2-1-5 壓電複合材料 13 2-2 壓電特性參數 14 2-2-1 機電耦合係數 14 2-2-2 機械品質因數 15 2-2-3 壓電方程式 16 2-2-4 壓電操作方向模式 18 2-3 壓電晶域結構 19 2-3-1 晶體壓電之根源 19 2-3-2 容忍因子 21 2-3-3 晶格與晶系 22 2-4 介電理論 23 2-4-1 介電原理 23 2-4-2 介電損耗 25 2-5 織構化陶瓷TEXTURED 26 2-5-1 局部化學晶轉化法(Topochemical micro-crystalline conversion) 26 2-5-2 模板晶粒成長法(Template Grain Growth) 28 2-6 壓電式加速規PIEZOELECTRIC ACCELEROMETER 30 2-6-1 壓電加速規基本原理介紹 30 2-6-2 單軸式壓電加速規結構-環形壓縮式 31 2-7-3 單軸式壓電加速規結構-鈸型壓縮式 32 第三章 實驗流程與量測 34 3-1 壓電陶瓷體的製作 34 3-1-1陶瓷粉末的製備 34 3-1-2 陶瓷體的製造 35 3-3 壓電加速規製作 37 3-2 織構化陶瓷體製作 38 3-2-1 NaNbO3模板製作 38 3-2-1流沿法製程 38 3-4 壓電陶瓷體的量測與分析儀器 39 3-4-1 密度 39 3-4-2 SEM 40 3-4-3 XRD 40 3-4-4 電性量測 41 3-5 壓電加速規的量測 42 第四章 實驗結果與討論 44 4-1 壓電加速規量測 44 4-1-1 材料的參數 45 4-1-2 環形壓縮式加速規-靈敏度量測 45 4-1-3 環形壓縮式加速規-工作頻率範圍 47 4-1-3環形壓縮式加速規-線性度量測 52 4-2 鈸型壓電加速規量測 58 4-2-1 鈸型壓電加速規-靈敏度量測 58 4-2-2 鈸型壓電加速規-工作頻率範圍 59 4-2-3 鈸型壓電加速規-線性度量測 61 4-2-3 鈸型壓電加速規-noise量測 62 4-3 壓電加速規文獻比較 64 4-4 壓電加速規應用於機械量測 65 4-5 無鉛織構化陶瓷 66 4-5-1 XRD、SEM -前驅物Bi2.5Na3.5Nb5O18 66 4-3-2 XRD、SEM -模板NaNbO3 68 4-3-3 SEM-改變NaNbO3模板摻雜量 69 4-3-4 XRD-改變NaNbO3模板摻雜量 71 4-3-4 介電量測-改變NaNbO3模板摻雜量 72 4-3-5 電特性 73 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 76 參考文獻 77

    [1] 陳弘仁,“物聯網應用需求爆發 MEMS感測器商機飛躍成長”, 新電子, 2015.
    [2] 財經知識庫 http://www.moneydj.com/KMDJ/Wiki
    [3] 吳朗, "電子陶瓷-壓電 " 全欣科技圖書, vol. 7, pp. 7-74, 1994.
    [4] B.Jaffe, "Piezoelectric ceramics " Academic Press Inc, pp. 23-91, 1971.
    [5] X. Pang, J. Qiu, K. Zhu, and B. Shao, "Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1783-1787, 2011.
    [6] J. Zhang, Y. Qin, Y. Gao, W. Yao, M. Zhao, and D. Damjanovic, "Improvement of Physical Properties for KNN-based Ceramics by Modified Two-Step Sintering," Journal of the American Ceramic Society, vol. 97, pp. 759-764, 2014.
    [7] X. Zhao, B. Zhang, L. Zhu, L. Zhao, and P. Zhou, "Study of polymorphic phase boundary in (Na,K,Li) (Nb,Ta,Sb)O3 piezoelectric ceramics," Journal of Physics D: Applied Physics, vol. 47(6), pp. 065105, 2014.
    [8] J. Wu, T. Peng, Y. Wang, D. Xiao, J. Zhu, Y. Jin, et al., "Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 Lead-Free Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 319-321, 2007.
    [9] Y. Kang, Y. Zhao, R. Huang, Y. Zhao, and H. Zhou, "Effect of Changing Na/K Ratio on Structure and Electrical Properties of (NaxKy) (Nb0.885Sb0.08)-0.035LiTaO3 Lead-Free Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 94, pp. 1683-1686, 2011.
    [10] J. Fu, R. Zuo, Y. Wu, Z. Xu, and L. Li, "Phase Transition and Electrical Properties of Li-and Ta-Substituted (Na0.52K0.48)(Nb0.96Sb0.04)O3 Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3771-3773, 2008.
    [11] T. Kimura, T. Yoshimoto, N. Ma, Y. Fujita and Takashi Yamaguchi, "Mechanism of Grain Orientation During Hot-Pressing of Bismuth Titanate," Journal of the American Ceramic Society, vol. 72, pp. 85-89, 1998.
    [12] Sabolsky, Edward M., Gary L. Messing, and Susan Trolier‐McKinstry. "Kinetics of templated grain growth of 0.65 Pb (Mg1/3Nb2/3) O3• 0.35 PbTiO3." Journal of the American Ceramic Society,vol. 84(11), pp 2507-2513, 2001.
    [13] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K.Takatori, T.Homma, et al., "Lead-free piezoceramics," Nature, vol. 432, pp. 81-4, 2004.
    [14] 何建龍,許怡儒,“加速度微感測器”,2-4;10-12, 2002.
    [15] 楊久進,李承勳,蔡偉立,“微型加速規之開發”, 2005.
    [16] S. H. Choy, X. X. Wang, H. L. W. Chan, C. L. Choy, "Study of compressive type accelerometer based on lead-free BNKBT piezoceramics," Applied Physics A, vol. 82, pp.715-718, 2006.
    [17] S. Z hang, X. Jiang, M. Lapsley, P, Moses and T. R. Shrout, "Piezoelectric accelerometers for ultrahigh temperature application", Applied Physics Letters, vol 96(1), pp. 013506. 2010.
    [18] A, Dogan, K, Uchino, R. E. Newnham, "Composite Piezoelectric Transducer with Truncated Conical Endcaps Cymbal," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44(3), pp. 597-605, 1997.
    [19] B. Koc, A. Dogan, J. F. Fernandez, R. E. Newnham, K. Uchino, "Accelerometer Application of the Modified Moonie (Cymbal) Transducer", Japanese Journal of Applied Physics, vol. 35, pp. 4547-4549,1996.
    [20] 孫. 朱建國, 李衛, "電子與光電子材料," 北京國防工業出版社, 2007.
    [21] 楊慧德, "物理冶金學八版," pp. p1-1~p3-46, p15-1~17-4.
    [22] 邱碧秀, "電子陶瓷材料," 徐氏基金會, 1992
    [23] From Wikimedia Commons, "Dielectric responses圖," https://commons.wikimedia.org/wiki/File:Dielectric_responses.svg.
    [24] L. Liu, "Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years", Journal of Materials Science: Materials in Electronics, vol. 26(7), pp. 4425-4437, 2015.
    [25] A. Kikuchihara, F. Sakurai, T. Kimura, "Preparation of Platelike NaNbO3 Particles by Single-Step Molten Salt Synthesis", Journal of the American Ceramic Society, vol. 95(5), 1556-1562, 2012.
    [26] T. Kimura, T. Yamaguchi, "Fused salt synthesis of Bi4Ti3O12", Ceramics International, vol. 9(1), pp. 13-17 , 1983.
    [27] K. H. Yoon, Y. S. Cho, D. H. Kang, "Molten salt synthesis of lead-based relaxors", Journal of Materials Science, vol. 33(12), pp. 2977-2984, 1998.
    [28] Y. Yan, D. Liu, W. Zhao, and H. Zhou, "Topochemical Synthesis of a High-Aspect-Ratio Platelet NaNbO3 Template", Journal of the American Ceramic Society, vol. 90(8),pp. 2399-2403, 2007.
    [29] C. Ye, J. Hao, B. Shen, and J. Zhai, "Large Strain Response in Textured 0.79BNT–0.20BKT–0.01NKN Lead‐Free Piezoelectric Ceramics", Journal of the American Ceramic Society, vol. 95(11), pp. 3577-3581, 2012.
    [30] Z. Zhang, J. Yang, Z. Liu, Y. Li, "Evolution of textured microstructure of Li-doped (K,Na)NbO3ceramics prepared by reactive templated grain growth, "Journal of Alloys and Compounds, vol. 624, pp. 158–164, 2015.
    [31] G. Tutuncu, Y. Chang, S. Poterala, G.L. Messing, J.L. Jones, "In-situ observations of templated grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: texture development and template–matrix interactions", Journal of the American Ceramic Society, vol. 95(8),pp. 2653–2659, 2012.
    [32] S. H. Choy, X. X. Wang, H. L. W. Chan, C. L. Choy, "Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3lead-free piezoelectric ceramics for accelerometer application", Applied Physics A, vol. 89, pp. 775–781, 2007
    [33] P. Ochoa, M. Villegas, J. L. Pons, P. Leidinger, J. Francisco, "Tunability of Cymbals as Piezocomposite Transducers", Journal of Electroceramics, vol. 14(3), pp. 221–229, 2005.
    [34] C. L. Sun, K. H. Lam, S. H. Choy, H. L. W. Chan, X.-Z. Zhao, and C. L. Choy, "High sensitivity cymbal-based accelerometer", Review of Scientific Instruments, vol. 77(3), pp. 036109, 2006.
    [35] 陳泓儒," 燒結溫度與極化條件於無鉛壓電陶瓷(Na, K)(Nb, Sb)O3–LiTaO3 (NKLNTS)的影響與應用", 國立臺南大學電機工程研究所碩士論文, pp. 36-37, 2015.
    [36] G. J. Lee, B. H. Kim, S. A. Yang, J. J. Park, S. D. Bu and M.K. Lee, "Piezoelectric and Ferroelectric Properties of (Bi,Na)TiO3–(Bi,Li)TiO3–(Bi,K)TiO3Ceramics for Accelerometer Application", Journal of the American Ceramic Society, vol. 100(2), pp. 678-685, 2017.
    [37] D. Li, D. Fang, L. Wang, W. Ju and M. Jia. "Cymbal piezocomposites for vibration accelerometer applications", Integrated Ferroelectrics, vol. 78(1), pp. 165-171, 2006.
    [38] Lanfredi, S., M. H. Lente, and J. A. Eiras. "Phase transition at low temperature in NaNbO 3 ceramic", Applied Physics Letters , vol 80(15), pp. 2731-2733, 2002.
    [39] C.-W. Ahn, J.-J. Choi, J. Ryu, W.-H. Yoon, B.-D. Hahn, J.-W. Kim, "Composition design rule for energy harvesting devices in piezoelectric perovskite ceramics," Materials Letters, vol. 141, pp. 323-326, 2015.

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE