| 研究生: |
黃思銘 Huang, Sz-Ming |
|---|---|
| 論文名稱: |
以固態法合成無鉛壓電材料(Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3應用於壓電加速規與織構化陶瓷之研究 The synthesis of (Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3 lead free ceramics using conventional and template-assist method for piezoelectric accelerometer applications |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 壓電特性 、無鉛陶瓷 、加速規 、模板晶粒成長法 、織構化陶瓷 |
| 外文關鍵詞: | Piezoelectric, Lead-free, Accelerometer, TGG, Texture |
| 相關次數: | 點閱:64 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於以無鉛壓電材料製備兩種形式的壓電加速規,分別為壓縮式和鈸型兩種型態;以及透過模板晶粒成長法(TGG)進行織構化陶瓷的製備。
壓電加速規實驗主要透過靈敏度與線性度及頻寬的分析,探討材料特性以及結構差異對加速規性能的影響;織構化陶瓷實驗部分主要探討改變模板參雜量對於材料特性之影響,利用XRD與TOPAS軟體進行相分析,得到晶格取向度以及相組成比例,並透過SEM拍攝材料顯微結構,確認模板能促進晶格成長。
從本實驗中得到以下的重要結果: (一) 壓電加速規靈敏度受材料d33影響最大。
(二) 鈸型加速規擁有較高的靈敏度,使用頻率範圍較窄;環形壓縮式加速規靈敏度較低但使用頻寬較高。(三) 無鉛壓電加速規能實際應用於馬達震動。(四)模板摻雜量於5 %時,有較佳的材料密度與最高的織構取向度,擁有有較佳的電特性。
SUMMARY
Lead-free piezoelectric (Na0.52K0.4425Li0.0375)(Nb0.8925Ta0.0375Sb0.07)O3 (NKLNTS) ceramics were synthesized by conventional mixed oxide method. The ceramics which had an electromechanical coupling factors kp = 45.06% and a piezoelectric constant d33 = 300pC/N were used to fabricate piezoelectric accelerometer and textured study. Two types of piezoelectric accelerometers, assembled with NKLNTS piezoelectric elements, were examined their sensitivity, linearity, frequency range and compared with the PZT ceramic accelerometer in same structures. Textured ceramics were synthesized by template grain growth (TGG). The main propose of this study is to fabricate piezoelectric accelerometer
Keyword: Piezoelectric, Lead-free ceramics, Accelerometer, TGG ,Texture
[1] 陳弘仁,“物聯網應用需求爆發 MEMS感測器商機飛躍成長”, 新電子, 2015.
[2] 財經知識庫 http://www.moneydj.com/KMDJ/Wiki
[3] 吳朗, "電子陶瓷-壓電 " 全欣科技圖書, vol. 7, pp. 7-74, 1994.
[4] B.Jaffe, "Piezoelectric ceramics " Academic Press Inc, pp. 23-91, 1971.
[5] X. Pang, J. Qiu, K. Zhu, and B. Shao, "Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1783-1787, 2011.
[6] J. Zhang, Y. Qin, Y. Gao, W. Yao, M. Zhao, and D. Damjanovic, "Improvement of Physical Properties for KNN-based Ceramics by Modified Two-Step Sintering," Journal of the American Ceramic Society, vol. 97, pp. 759-764, 2014.
[7] X. Zhao, B. Zhang, L. Zhu, L. Zhao, and P. Zhou, "Study of polymorphic phase boundary in (Na,K,Li) (Nb,Ta,Sb)O3 piezoelectric ceramics," Journal of Physics D: Applied Physics, vol. 47(6), pp. 065105, 2014.
[8] J. Wu, T. Peng, Y. Wang, D. Xiao, J. Zhu, Y. Jin, et al., "Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 Lead-Free Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 319-321, 2007.
[9] Y. Kang, Y. Zhao, R. Huang, Y. Zhao, and H. Zhou, "Effect of Changing Na/K Ratio on Structure and Electrical Properties of (NaxKy) (Nb0.885Sb0.08)-0.035LiTaO3 Lead-Free Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 94, pp. 1683-1686, 2011.
[10] J. Fu, R. Zuo, Y. Wu, Z. Xu, and L. Li, "Phase Transition and Electrical Properties of Li-and Ta-Substituted (Na0.52K0.48)(Nb0.96Sb0.04)O3 Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3771-3773, 2008.
[11] T. Kimura, T. Yoshimoto, N. Ma, Y. Fujita and Takashi Yamaguchi, "Mechanism of Grain Orientation During Hot-Pressing of Bismuth Titanate," Journal of the American Ceramic Society, vol. 72, pp. 85-89, 1998.
[12] Sabolsky, Edward M., Gary L. Messing, and Susan Trolier‐McKinstry. "Kinetics of templated grain growth of 0.65 Pb (Mg1/3Nb2/3) O3• 0.35 PbTiO3." Journal of the American Ceramic Society,vol. 84(11), pp 2507-2513, 2001.
[13] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K.Takatori, T.Homma, et al., "Lead-free piezoceramics," Nature, vol. 432, pp. 81-4, 2004.
[14] 何建龍,許怡儒,“加速度微感測器”,2-4;10-12, 2002.
[15] 楊久進,李承勳,蔡偉立,“微型加速規之開發”, 2005.
[16] S. H. Choy, X. X. Wang, H. L. W. Chan, C. L. Choy, "Study of compressive type accelerometer based on lead-free BNKBT piezoceramics," Applied Physics A, vol. 82, pp.715-718, 2006.
[17] S. Z hang, X. Jiang, M. Lapsley, P, Moses and T. R. Shrout, "Piezoelectric accelerometers for ultrahigh temperature application", Applied Physics Letters, vol 96(1), pp. 013506. 2010.
[18] A, Dogan, K, Uchino, R. E. Newnham, "Composite Piezoelectric Transducer with Truncated Conical Endcaps Cymbal," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44(3), pp. 597-605, 1997.
[19] B. Koc, A. Dogan, J. F. Fernandez, R. E. Newnham, K. Uchino, "Accelerometer Application of the Modified Moonie (Cymbal) Transducer", Japanese Journal of Applied Physics, vol. 35, pp. 4547-4549,1996.
[20] 孫. 朱建國, 李衛, "電子與光電子材料," 北京國防工業出版社, 2007.
[21] 楊慧德, "物理冶金學八版," pp. p1-1~p3-46, p15-1~17-4.
[22] 邱碧秀, "電子陶瓷材料," 徐氏基金會, 1992
[23] From Wikimedia Commons, "Dielectric responses圖," https://commons.wikimedia.org/wiki/File:Dielectric_responses.svg.
[24] L. Liu, "Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years", Journal of Materials Science: Materials in Electronics, vol. 26(7), pp. 4425-4437, 2015.
[25] A. Kikuchihara, F. Sakurai, T. Kimura, "Preparation of Platelike NaNbO3 Particles by Single-Step Molten Salt Synthesis", Journal of the American Ceramic Society, vol. 95(5), 1556-1562, 2012.
[26] T. Kimura, T. Yamaguchi, "Fused salt synthesis of Bi4Ti3O12", Ceramics International, vol. 9(1), pp. 13-17 , 1983.
[27] K. H. Yoon, Y. S. Cho, D. H. Kang, "Molten salt synthesis of lead-based relaxors", Journal of Materials Science, vol. 33(12), pp. 2977-2984, 1998.
[28] Y. Yan, D. Liu, W. Zhao, and H. Zhou, "Topochemical Synthesis of a High-Aspect-Ratio Platelet NaNbO3 Template", Journal of the American Ceramic Society, vol. 90(8),pp. 2399-2403, 2007.
[29] C. Ye, J. Hao, B. Shen, and J. Zhai, "Large Strain Response in Textured 0.79BNT–0.20BKT–0.01NKN Lead‐Free Piezoelectric Ceramics", Journal of the American Ceramic Society, vol. 95(11), pp. 3577-3581, 2012.
[30] Z. Zhang, J. Yang, Z. Liu, Y. Li, "Evolution of textured microstructure of Li-doped (K,Na)NbO3ceramics prepared by reactive templated grain growth, "Journal of Alloys and Compounds, vol. 624, pp. 158–164, 2015.
[31] G. Tutuncu, Y. Chang, S. Poterala, G.L. Messing, J.L. Jones, "In-situ observations of templated grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: texture development and template–matrix interactions", Journal of the American Ceramic Society, vol. 95(8),pp. 2653–2659, 2012.
[32] S. H. Choy, X. X. Wang, H. L. W. Chan, C. L. Choy, "Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3lead-free piezoelectric ceramics for accelerometer application", Applied Physics A, vol. 89, pp. 775–781, 2007
[33] P. Ochoa, M. Villegas, J. L. Pons, P. Leidinger, J. Francisco, "Tunability of Cymbals as Piezocomposite Transducers", Journal of Electroceramics, vol. 14(3), pp. 221–229, 2005.
[34] C. L. Sun, K. H. Lam, S. H. Choy, H. L. W. Chan, X.-Z. Zhao, and C. L. Choy, "High sensitivity cymbal-based accelerometer", Review of Scientific Instruments, vol. 77(3), pp. 036109, 2006.
[35] 陳泓儒," 燒結溫度與極化條件於無鉛壓電陶瓷(Na, K)(Nb, Sb)O3–LiTaO3 (NKLNTS)的影響與應用", 國立臺南大學電機工程研究所碩士論文, pp. 36-37, 2015.
[36] G. J. Lee, B. H. Kim, S. A. Yang, J. J. Park, S. D. Bu and M.K. Lee, "Piezoelectric and Ferroelectric Properties of (Bi,Na)TiO3–(Bi,Li)TiO3–(Bi,K)TiO3Ceramics for Accelerometer Application", Journal of the American Ceramic Society, vol. 100(2), pp. 678-685, 2017.
[37] D. Li, D. Fang, L. Wang, W. Ju and M. Jia. "Cymbal piezocomposites for vibration accelerometer applications", Integrated Ferroelectrics, vol. 78(1), pp. 165-171, 2006.
[38] Lanfredi, S., M. H. Lente, and J. A. Eiras. "Phase transition at low temperature in NaNbO 3 ceramic", Applied Physics Letters , vol 80(15), pp. 2731-2733, 2002.
[39] C.-W. Ahn, J.-J. Choi, J. Ryu, W.-H. Yoon, B.-D. Hahn, J.-W. Kim, "Composition design rule for energy harvesting devices in piezoelectric perovskite ceramics," Materials Letters, vol. 141, pp. 323-326, 2015.