簡易檢索 / 詳目顯示

研究生: 張銘銓
Chang, Ming-Chuan
論文名稱: 溶膠凝膠法製作鈮酸鈦介電薄膜以應用於透明電子電路之研究
Research of Sol-Gel Derived TiNb2O7 Dielectric Thin Films for Transparent Electronic Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 溶膠凝膠法鈮酸鈦薄膜顯示科技電阻式記憶體
外文關鍵詞: sol-gel method, TiNb2O7 thin film, display technology, dielectric
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以溶膠凝膠法在ITO玻璃上塗佈TiNb2O7薄膜,並分為兩部分探討其應用於透明電晶體與電阻式記憶體之可行性。第一部分探討TiNb2O7薄膜在不同氣氛下沉積後退火200℃~500℃物理特性、能帶結構與介電特性。在製程溫度500℃以下,TiNb2O7薄膜皆呈現非晶並且擁有良好的可見光平均穿透率約80%。接著,我們製成Al/TiNb2O7/ITO(MIM)電容器用以量測其介電特性,並藉由等效電路模型之模擬輔助探討。在150℃製程溫度限制之下,未退火處理之TiNb2O7薄膜的光學能隙為3.64eV。以MIM結構偏壓1V時漏電流密度為1.025⨯10-6A/cm2,並且在1MHz量測下介電常數達24.15。在300℃製程溫度限制之下,TiNb2O7薄膜藉由大氣氣氛退火300℃可得光學能隙為3.55eV。製成MIM結構後電極退火150℃,偏壓1V時漏電流密度為8.976⨯10-7A/cm2,並且在1MHz頻率量測下可得介電常數達34.86。在500℃製程溫度限制之下,TiNb2O7薄膜經由氮氫氣氛退火400℃可得光學能隙為3.56eV。以MIM結構偏壓1V其漏電流密度為2.674⨯10-6 A/cm2,並在1MHz量測下介電常數高達39.65。根據實驗結果,高穿透率與良好介電特性之TiNb2O7薄膜將具潛力應用於不同軟性基板上作為透明薄膜電晶體之閘極介電層,並降低元件操作之功耗。
      第二部分,本研究發現Al/TiNb2O7/ITO之MIM電容器可作為電阻式記憶體單元。元件透過forming process後,具有自我限流之雙極性轉換特性。其Roff/Ron達2個數量級。我們以ESCA分析結果推測薄膜內有氧空缺之存在並將氧空缺視為導電燈絲之元素。最後,透過電流傳導機制分析解釋其電阻轉換特性並確認TiNb2O7可作為電阻式記憶體之電阻轉換層。

    To reduce power consumption of TTFT, a gate dielectric material with high dielectric constant and low leakage current density is necessary. The optical, chemical states and surface morphology of sol-gel derived TiNb2O7 thin films are investigated after limited post-annealing where the annealing temperature was smaller than 500℃, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non-lattice oxygen in the TNO film is proposed. The peak area ratio of non-lattice oxygen plays an important role in leakage current density of MIM capacitors. At high frequency, the ITO sheet resistance affects the capacitance density and dissipation factor. The as-deposited and e.a.air-300 samples with high dielectric constant (>20 at 1MHz) and low leakage current density (<1⨯10-5A/cm2 at 1V) have potential to be good gate dielectric materials of TTFT on PC and PI substrates, respectively.

    摘要 I SUMMARY II 致謝 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 顯示科技 3 2.1-1 顯示科技之演進 3 2.1-2 薄膜電晶體在顯示器中之角色 3 2.1-3 薄膜電晶體簡介 4 2.1-4 高介電常數透明材料在薄膜電晶體中之應用 6 2.2 介電材料 10 2.2-1 介電極化 10 2.2-2 介電薄膜中電流傳導機制 11 2.2-2-1 電極限制傳導機制 12 2.2-2-2 電極限制傳導機制 14 2.3 電阻式記憶體 18 2.4 TiNb2O7材料介紹 19 2.4-1 材料之選擇 19 2.4-2 TiNb2O7基本結構 20 第三章 實驗方法及步驟 22 3.1 實驗架構與流程 22 3.2 溶膠凝膠法介紹 23 3.3 電子束蒸鍍法介紹 24 3.4 實驗設備介紹 25 3.4-1 電子秤 25 3.4-2 磁石攪拌機 25 3.4-3 旋轉塗佈機(spin coater) 25 3.4-4 熱板(hot plate) 25 3.4-5 爐管(tube furnace) 25 3.5 分析與鑑定儀器 25 3.5-1 多功能X光薄膜繞射儀 26 3.5-2 高解析場發射掃描式電子顯微鏡 26 3.5-3 化學分析電子光譜儀 27 3.5-4 紫外光-可見光-近紅外光分光光譜儀 27 3.5-5 原子力顯微鏡 27 3.5-6 半導體參數分析儀 27 第四章 結果與討論 31 4.1 TiNb2O7薄膜介電特性分析 31 4.1-1 TiNb2O7薄膜之製備 31 4.1-1-1 SEM&AFM薄膜剖面及表面分析 31 4.1-1-2 薄膜晶相分析 36 4.1-1-3 UV-Vis薄膜光學分析 37 4.1-1-4 ESCA薄膜表面化學鍵結分析與簡易能帶結構 39 4.1-1-5 Al/TiNb2O7/ITO介電特性分析 42 4.1-2 不同溫度退火TiNb2O7薄膜 47 4.1-2-1 XRD薄膜晶相分析 47 4.1-2-2 SEM&AFM薄膜表面形貌分析 47 4.1-2-3 UV-Vis薄膜光學分析 48 4.1-2-4 ESCA薄膜表面化學鍵結分析 50 4.1-2-5 Al/TiNb2O7/ITO介電特性分析 55 4.1-3 不同氛圍退火TiNb2O7薄膜 64 4.1-3-1 XRD薄膜晶相分析 64 4.1-3-2 SEM薄膜表面形貌分析 65 4.1-3-3 UV-Vis薄膜光學分析 66 4.1-3-4 Al/TiNb2O7/ITO介電特性分析 70 4.1-4 鋁電極退火之Al/TiNb2O7/ITO介電特性分析 81 4.2 Al/TiNb2O7/ITO電阻轉換特性分析 88 第五章 結論 99 參考文獻 100

    1. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488-492. (2004)
    2. Fortunato, E., Barquinha, P., & Martins, R. Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances. Advanced materials, 24(22), 2945-2986. (2012)
    3. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Applied physics letters, 89(11), 2123. (2006)
    4. Hoffman, R., Norris, B. J., & Wager, J. ZnO-based transparent thin-film transistors. Applied physics letters, 82(5), 733-735. (2003)
    5. Park, J.-S., Kim, H., & Kim, I.-D. Overview of electroceramic materials for oxide semiconductor thin film transistors. Journal of Electroceramics, 32(2-3), 117-140. (2014)
    6. Ando, T. Ultimate scaling of high-κ gate dielectrics: Higher-κ or interfacial layer scavenging? Materials, 5(3), 478-500. (2012)
    7. Chiu, F.-C. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. (2014)
    8. Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., M.-J. Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951-1970. (2012)
    9. Hsieh, W.-K., Chuang, R. W., & Chang, S.-J. Two-bit-per-cell resistive switching memory device with a Ti/MgZnO/Pt structure. RSC Advances, 5(107), 88166-88170. (2015)
    10. Hsieh, W.-K., Lam, K.-T., & Chang, S.-J. Bipolar Ni/ZnO/HfO2/Ni RRAM with multilevel characteristic by different reset bias. Materials Science in Semiconductor Processing, 35, 30-33. (2015)
    11. Nardi, F., Balatti, S., Larentis, S., Gilmer, D. C., & Ielmini, D. Complementary switching in oxide-based bipolar resistive-switching random memory. IEEE Transactions on Electron Devices, 60(1), 70-77. (2013)
    12. Jeong, D. S., Thomas, R., Katiyar, R., Scott, J., Kohlstedt, H., Petraru, A., & Hwang, C. S. Emerging memories: resistive switching mechanisms and current status. Reports on Progress in Physics, 75(7), 076502. (2012)
    13. Lin, C.-Y., Chang, K.-C., Chang, T.-C., Tsai, T.-M., Pan, C.-H., Zhang, R., Y.-C. Effects of varied negative stop voltages on current self-compliance in indium tin oxide resistance random access memory. IEEE Electron Device Letters, 36(6), 564-566. (2015)
    14. Kim, K. M., Jeong, D. S., & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 22(25), 254002. (2011)
    15. Hu, S., Wu, S., Jia, W., Yu, Q., Deng, L., Fu, Y. Q., T. P. Review of nanostructured resistive switching memristor and its applications. Nanoscience and Nanotechnology Letters, 6(9), 729-757. (2014)
    16. Jeong, H. Y., Lee, J. Y., & Choi, S. Y. Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices. Advanced Functional Materials, 20(22), 3912-3917. (2010)
    17. Cava, R., Krajewski, J., Peck, W., & Roberts, G. Dielectric properties of TiO2–Nb2O5 crystallographic shear structures. Journal of materials research, 11(06), 1428-1432. (1996)
    18. Park, H., Wu, H. B., Song, T., & Paik, U. Porosity‐Controlled TiNb2O7 Microspheres with Partial Nitridation as A Practical Negative Electrode for High‐Power Lithium‐Ion Batteries. Advanced Energy Materials, 5(8). (2015)
    19. Hench, L. L., & West, J. K. The sol-gel process. Chemical Reviews, 90(1), 33-72. (1990)
    20. Livage, J., Henry, M., & Sanchez, C. Sol-gel chemistry of transition metal oxides. Progress in solid state chemistry, 18(4), 259-341. (1988)
    21. Eggen, C. L., McAfee, P. M., Jin, Y., & Lin, Y. Surface roughness and chemical properties of porous inorganic films. Thin Solid Films, 591, 111-118. (2015)
    22. Hsu, C.-H., Yang, P.-C., Yang, H.-W., Yan, S.-F., & Tung, H.-H. Study and fabrication of ZnNb2O6 thin films by sol–gel method. Thin Solid Films, 519(15), 5030-5032. (2011)
    23. Blaskov, V., Ninova, I. SEM charaterization of spin-coated nanocrystalline TiO2 thin film influenced by the presence of acetylacetone During the sol preparation. Nanoscience & Nanotechnology, 4. (2004)
    24. Spanhel, L., & Anderson, M. A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society, 113(8), 2826-2833. (1991)
    25. Tiemann, M. Porous metal oxides as gas sensors. Chemistry–A European Journal, 13(30), 8376-8388. (2007)
    26. Chang, S.-m., & Doong, R.-a. ZrO2 thin films with controllable morphology and thickness by spin-coated sol–gel method. Thin Solid Films, 489(1), 17-22. (2005)
    27. Cheng, Y.-J., & Gutmann, J. S. Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer. Journal of the American Chemical Society, 128(14), 4658-4674. (2006)
    28. Grosso, D., de AA Soler‐Illia, G., Crepaldi, E. L., Charleux, B., & Sanchez, C. Nanocrystalline Transition‐Metal Oxide Spheres with Controlled Multi‐Scale Porosity. Advanced Functional Materials, 13(1), 37-42. (2003)
    29. Yang, Y., Shi, Y., Liu, J., & Guo, T.-F. The control of morphology and the morphological dependence of device electrical and optical properties in polymer electronics. Electronic and Optical Properties of Conjugated Molecular Systems in Condensed Phases, 37, 307-354. (2003)
    30. Livage, J., Henry, M., & Sanchez, C. Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry, 18, 259-341. (1988)
    31. Gao, R., Yang, H., Chen, Y., Sun, J., Zhao, Y., & Shen, B. Effect of cooling oxygen pressure on the photoconductivity in Bi0.9La0.1FeO3 thin films. Journal of Alloys and Compounds, 591, 346-350. (2014)
    32. Milea, C., Bogatu, C., & Duta, A. The influence of parameters in silica sol-gel process. Bulletin of The Transilvania University of Brasov, 4, 53. (2011)
    33. Avis, C., & Jang, J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method. Journal of Materials Chemistry, 21(29), 10649-10652. (2011)
    34. Kim, J., Fuentes-Hernandez, C., & Kippelen, B. High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator. Applied physics letters, 93(24), 242111. (2008)
    35. Cho, Y.-J., Shin, J.-H., Bobade, S., Kim, Y.-B., & Choi, D.-K. Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors. Thin Solid Films, 517(14), 4115-4118. (2009)
    36. Xu, W., Wang, H., Ye, L., & Xu, J. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. Materials Chemistry C., 100(2), 5389-5396. (2014)
    37. Tong, X., & Zou, X. Study on electrical characteristics of amorphous InGaZnO MOS capacitors with High κ HfOxNy gate dielectric. Paper presented at the Electron Devices and Solid-State Circuits, 2009. EDSSC 2009. IEEE International Conference of. (2009)
    38. He, W., Xu, Wenchao, & Liu, J.-M. Surface modification on solution processable ZrO2 high‑k dielectrics for low voltage operations of organic thin film transistors. The journal of Physical Chemistry C, 120, 9949-9957. (2016)
    39. Zhang, L., Li, J., Zhang, X., Yu, D., Jiang, X., & Zhang, Z. Glass‐substrate‐based high‐performance ZnO‐TFT by using a Ta2O5 insulator modified by thin SiO2 films. physica status solidi (a), 207(8), 1815-1819. (2010)
    40. Song, J., Han, C., & Lai, P. T. Comparative Study of Nb2O5, NbLaO, and La2O3 as Gate Dielectric of InGaZnO Thin-Film Transistor. IEEE Transactions on Electron Devices, 63(5), 1928-1933. (2016)
    41. Hsu, H.-H., Chang, C.-Y., & Cheng, C.-H. A flexible IGZO thin-film transistor with stacked-based dielectrics fabricated at room temperature. IEEE Electron Device Letters, 34(6), 768-770. (2013)
    42. Chen, F.-H., Her, J.-L., Shao, Y.-H., Matsuda, Y. H., & Pan, T.-M. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors. Nanoscale research letters, 8(1), 1. (2013)
    43. Su, N., Wang, S.-J., & Chin, A. High-performance InGaZnO thin-film transistors using HfLaO gate dielectric. IEEE Electron Device Letters, 30(12), 1317-1319. (2009)
    44. Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices. Journal of Vacuum Science & Technology B, 18(3), 1785-1791. (2000)
    45. Zhao, Y., Kita, K., Kyuno, K., & Toriumi, A. Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators. Applied physics letters, 94(4). (2009)
    46. Ramírez, G., Rodil, S., Muhl, S., Turcio-Ortega, D., Olaya, J., Rivera, M. Escobar-Alarcón, L. Amorphous niobium oxide thin films. Journal of Non-Crystalline Solids, 356(50), 2714-2721. (2010)
    47. Dette, C., Pérez-Osorio, M. A., Kley, C. S., Punke, P., Patrick, C. E., Jacobson, P., Kern, K. TiO2 anatase with a bandgap in the visible region. Nano letters, 14(11), 6533-6538. (2014)
    48. Zhu, Y., Chen, S., Xu, R., Fang, Z., Zhao, J., Fan, Y., Jiang, Z. Band offsets of Er2O3 films epitaxially grown on Si substrates. Applied physics letters, 88(16). (2006)
    49. He, W., Chan, D. S., Kim, S.-J., Kim, Y.-S., Kim, S.-T., & Cho, B. J. Process and Material Properties of HfLaOx Prepared by Atomic Layer Deposition. Journal of The Electrochemical Society, 155(10), G189-G193. (2008)
    50. Han, J.-T., & Goodenough, J. B. 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. Chemistry of Materials, 23(15), 3404-3407. (2011)
    51. Zhang, H., Kam, C., Zhou, Y., Han, X., Lam, Y., Chan, Y., & Pita, K. Optical and electrical properties of sol–gel derived BaTiO3 films on ITO coated glass. Materials chemistry and physics, 63(2), 174-177. (2000)
    52. Tang, H., Prasad, K., Sanjines, R., Schmid, P., & Levy, F. Electrical and optical properties of TiO2 anatase thin films. Journal of applied physics, 75(4), 2042-2047. (1994)
    53. Mardare, D., Tasca, M., Delibas, M., & Rusu, G. On the structural properties and optical transmittance of TiO2 rf sputtered thin films. Applied Surface Science, 156(1), 200-206. (2000)
    54. Fallah, H. R., Ghasemi, M., Hassanzadeh, A., & Steki, H. The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation. Materials Research Bulletin, 42(3), 487-496. (2007)
    55. Lu, X., Jian, Z., Fang, Z., Gu, L., Hu, Y.-S., Chen, W., Chen, L. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy & Environmental Science, 4(8), 2638-2644. (2011)
    56. Gassenbauer, Y., Schafranek, R., Klein, A., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., & Schlögl, R. Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Physical Review B, 73(24), 245312. (2006)
    57. Lounis, S. D., Runnerstrom, E. L., Bergerud, A., Nordlund, D., & Milliron, D. J. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. Journal of the American Chemical Society, 136(19), 7110-7116. (2014)
    58. Zhang, D., Liu, Y., Liu, Y., & Yang, H. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B: Condensed Matter, 351(1), 178-183. (2004)
    59. Atashbar, M., Sun, H., Gong, B., Wlodarski, W., & Lamb, R. XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films, 326(1), 238-244. (1998)
    60. Wang, X., & Shen, G. Intercalation pseudo-capacitive TiNb2O7@ carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 15, 104-115. (2015)
    61. Özer, N., Chen, D.-G., & Lampert, C. M. Preparation and properties of spin-coated Nb2O5 films by the sol-gel process for electrochromic applications. Thin Solid Films, 277(1), 162-168. (1996)
    62. Shibagaki, S., & Fukushima, K. XPS analysis on Nb–SrTiO3 thin films deposited with pulsed laser ablation technique. Journal of the European Ceramic Society, 19(6), 1423-1426. (1999)
    63. Weibin, Z., Weidong, W., Xueming, W., Xinlu, C., Dawei, Y., Changle, S., Li, B. The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods. Surface and Interface Analysis, 45(8), 1206-1210. (2013)
    64. Karulkar, P. C., & Nordman, J. E. Study of thin Nb oxide films. Journal of Vacuum Science & Technology, 17(1), 462-465. (1980)
    65. Kowalski, K., Bernasik, A., Singer, W., Singer, X., & Camra, J. ‘In situ’XPS investigation of the baking effect on the surface oxide structure formed on niobium sheets used for superconducting RF cavity production. Paper presented at the Proc. of the 11th Workshop on RF Superconductivity, Travemünde, Germany. (2003)
    66. Arfaoui, I., Guillot, C., Cousty, J., & Antoine, C. Evidence for a large enrichment of interstitial oxygen atoms in the nanometer-thick metal layer at the NbO/Nb(110) interface. Journal of applied physics, 91(11), 9319-9323. (2002)
    67. Sanz, J., & Hofmann, S. Auger electron spectroscopy and X-ray photoelectron spectroscopy studies of the oxidation of polycrystalline tantalum and niobium at room temperature and low oxygen pressures. Journal of the Less Common Metals, 92(2), 317-327. (1983)
    68. Biesinger, M. C., Lau, L. W., Gerson, A. R., & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257(3), 887-898. (2010)
    69. Kumar, P. M., Badrinarayanan, S., & Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358(1), 122-130. (2000)
    70. Babelon, P., Dequiedt, A., Mostefa-Sba, H., Bourgeois, S., Sibillot, P., & Sacilotti, M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 322(1), 63-67. (1998)
    71. Alam, M., & Cameron, D. Preparation and characterization of TiO2 thin films by sol-gel method. Journal of sol-gel science and technology, 25(2), 137-145. (2002)
    72. Sathish, M., Viswanathan, B., Viswanath, R., & Gopinath, C. S. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 17(25), 6349-6353. (2005)
    73. Mayer, J., Diebold, U., Madey, T., & Garfunkel, E. Titanium and reduced titania overlayers on titanium dioxide (110). Journal of Electron Spectroscopy and Related Phenomena, 73(1), 1-11. (1995)
    74. Lao, S. X., Martin, R. M., & Chang, J. P. Plasma enhanced atomic layer deposition of HfO2 and ZrO2 high-k thin films. Journal of Vacuum Science & Technology A, 23(3), 488-496. (2005)
    75. Zanoni, R., Righini, G., Montenero, A., Gnappi, G., Montesperelli, G., Traversa, E., & Gusmano, G. XPS analysis of sol‐gel processed doped and undoped TiO2 films for sensors. Surface and Interface Analysis, 22(1‐12), 376-379. (1994)
    76. Lin, C.-C., Chang, Y.-P., Lin, H.-B., & Lin, C.-H. Effect of non-lattice oxygen on ZrO2-based resistive switching memory. Nanoscale research letters, 7(1), 1. (2012)
    77. Kim, J. B., Fuentes-Hernandez, C., and Kippelen, B., High-performance InGaZnO thin-film transistors with high- k amorphous Ba0.5Sr0.5TiO3 gate insulator. Applied physics letters,93, 242111. (2008)
    78. Schmitz, A., Ping, A., Khan, M. A., Chen, Q., Yang, J., & Adesida, I. Metal contacts to n-type GaN. Journal of electronic materials, 27(4), 255-260. (1998)
    79. Park, Y., Choong, V., Gao, Y., Hsieh, B. R., & Tang, C. W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied physics letters, 68(19), 2699-2701. (1996)
    80. Perfler, L., Kahlenberg, V., Wikete, C., Schmidmair, D., Tribus, M., & Kaindl, R. Nanoindentation, High-Temperature Behavior, and Crystallographic/Spectroscopic Characterization of the High-Refractive-Index Materials TiTa2O7 and TiNb2O7. Inorganic chemistry, 54(14), 6836-6848. (2015)
    81. Goux, L., Vander Meeren, H., & Wouters, D. Metallorganic chemical vapor deposition of Sr-Ta-O and Bi-Ta-O films for backend integration of high-k capacitors. Journal of The Electrochemical Society, 153(7), F132-F136. (2006)
    82. Goswami, A., & Goswami, A. P. Dielectric and optical properties of ZnS films. Thin Solid Films, 16(2), 175-185. (1973)
    83. Song, X., Fu, R., & He, H. Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering. Microelectronic Engineering, 86(11), 2217-2221. (2009)
    84. Kumar, C. A., & Pamu, D. Dielectric, optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering. Applied Surface Science, 340, 56-63. (2015)
    85. Tan, S., Chen, B., Sun, X., Hu, X., Zhang, X., & Chua, S. Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition. Journal of Crystal Growth, 281(2), 571-576. (2005)
    86. Tan, S., Chen, B., Sun, X., Fan, W., Kwok, H. S., Zhang, X., & Chua, S. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of applied physics, 98(1), 13505-13505. (2005)
    87. Orikasa, Y., Hayashi, N., & Muranaka, S. Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering. Journal of applied physics, 103(11). (2008)
    88. Perego, M., Seguini, G., Scarel, G., Fanciulli, M., & Wallrapp, F. Energy band alignment at TiO2/Si interface with various interlayers. Journal of applied physics, 103(4), 43509-43509. (2008)
    89. Selim, F., Weber, M., Solodovnikov, D., & Lynn, K. Nature of native defects in ZnO. Physical review letters, 99(8), 085502. (2007)
    90. Ganduglia-Pirovano, M. V., Hofmann, A., & Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 62(6), 219-270. (2007)
    91. Nowotny, M., Bogdanoff, P., Dittrich, T., Fiechter, S., Fujishima, A., & Tributsch, H. Observations of p-type semiconductivity in titanium dioxide at room temperature. Materials Letters, 64(8), 928-930. (2010)
    92. Tsai, M. S., Sun, S., & Tseng, T.-Y. Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba, Sr)TiO3 capacitors. IEEE Transactions on Electron Devices, 46(9), 1829-1838. (1999)
    93. Xing, W., Kalland, L. E., Li, Z., & Haugsrud, R. Defects and Transport Properties in TiNb2O7. Journal of the American Ceramic Society, 96(12), 3775-3781. (2013)
    94. Ismail, M., Huang, C.-Y., Panda, D., Hung, C.-J., Tsai, T.-L., Jieng, J.-H., Ahmed, E. Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale research letters, 9(1), 1. (2014)
    95. Meng, L.-J., & Placido, F. Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications. Surface and Coatings Technology, 166(1), 44-50. (2003)
    96. Meng, T., McCandless, B. E., Buchanan, W. A., Birkmire, R. W., Hamilton, C. T., Aitken, B. G., & Williams, C. A. K. Effect of annealing atmosphere and temperature on the properties of Cd2SnO4 thin films. Paper presented at the Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. (2012)
    97. Kogut, L., & Komvopoulos, K. Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. Journal of applied physics, 95(2), 576-585. (2004)
    98. Choi, D., Harris, J. S., Warusawithana, M., & Schlom, D. G. Annealing condition optimization and electrical characterization of amorphous LaAlO3/GaAs metal-oxide-semiconductor capacitors. Applied physics letters, 90(24), 243505. (2007)
    99. Jeong, H. Y., Lee, J. Y., & Choi, S.-Y. Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films. (2010)
    100. Liu, P.-T., Fuh, C.-S., Fan, Y.-S., & Sze, S. InZnSnO-Based Electronic Devices for Flat Panel Display Applications. ECS Journal of Solid State Science and Technology, 3(9), Q3054-Q3057. (2014)
    101. Marinel, S., Choi, D. H., Heuguet, R., Agrawal, D., & Lanagan, M. Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceramics International, 39(1), 299-306. (2013)
    102. Ferreira, V. M., & Baptista, J. L. Role of niobium in magnesium titanate microwave dielectric ceramics. Journal of the American Ceramic Society, 79(6), 1697-1698. (1996)

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE