簡易檢索 / 詳目顯示

研究生: 黃偉哲
Huang, Wei-Che
論文名稱: 建構一網頁工具來針對C. elegans內之轉殖基因做piRNA標靶位置預測與避免基因沉默
Construction of a web tool to predict piRNA targeting sites and to avoid silencing for transgenes in C. elegans
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 線蟲基因沉默標靶位置預測
外文關鍵詞: piRNA, C. elegans, targeting-site prediction, silent mutations
相關次數: 點閱:501下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • piRNA於基因組中扮演守衛的角色,辨認外來基因並引發基因沉默現象,抵禦外來病毒的入侵。但此現象於實驗研究中卻是長年困擾著學者們,piRNA的標靶致使轉殖基因遭受基因沉默,其性狀因此無法表現。線蟲piRNA標靶規則的發現為此帶來一線曙光,根據此規則我們即可較準確的預測piRNA對轉殖基因標靶之情況,並設法修改轉殖基因序列避免其遭piRNA標靶而致使基因沉默。我們研究開發pirScan網頁工具,提供生物學家線蟲物種之piRNA標靶位置預測,並根據預測結果,提供使用者序列修改之建議,以逃脫piRNA的標靶,使用者僅須透過簡單操作即可獲得修改之序列,此序列經過再次預測piRNA標靶位置,確認其不只能逃脫piRNA之標靶,亦不會造成新的piRNA標靶位置。本文首先對於線蟲piRNA做簡介,說明研究動機以及pirScan運作流程,接著討論本研究所運用的資料及其處理方式,再來介紹pirScan網頁工具實際於網頁呈現之結果,最後以實例探討比較人工測試修改序列與pirScan提供之序列修改建議,討論我們所研究開發的pirScan網頁工具之實用性。相信有了pirScan的輔助,能使生物學家在線蟲相關研究上更加順利,並使更多未知的piRNA運作機制能夠被研究探明。
    pirScan網址:http://cosbi4.ee.ncku.edu.tw/pirScan/
    pirScan備用網址:http://cosbi2.ee.ncku.edu.tw/pirScan/ 與http://cosbi5.ee.ncku.edu.tw/pirScan/

    The piRNA-mediated transcriptional silencing mechanism lead the mRNA target site to inhibit gene expression or translation. It impediment to C. elegans researchers to observe the changes of phenotype. Biologists used to do try and error to modify sequences in order to avoid piRNA targeting. It’s not that effectively. Therefore, we developed pirScan which is a web tool for predicting C. elegans piRNA target site of a given sequence that provided by user. Subsequently, pirScan offers modify suggestions to introduce silent mutations into the input sequence. We implement these two features of pirScan according to piRNA sequences and codon usage table of C. elegans. pirScan web-based tool back-end is constructed by python script. With pirScan, C. elegans related researchers can predict the targeting site of their input sequences and obtain sequence silent mutation modify suggestions quickly. In this thesis, we will compare real experiment and pirScan to verify the practicality of pirScan. pirScan is available at http://cosbi4.ee.ncku.edu.tw/pirScan/.

    摘要 I 英文延伸摘要 III 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 中英對照表 XII 第一章 研究背景與動機 1 1.1 模式生物-線蟲 1 1.2 線蟲piRNA簡介 2 1.2.1 線蟲piRNA生成 2 1.2.2 線蟲piRNA基因調控功能 3 1.3 piRNA標靶規則 5 1.4 研究動機 10 1.5 pirScan運作流程 10 第二章 資料收集與處理 13 2.1 線蟲piRNA序列收集與處理 13 2.2 線蟲胺基酸密碼子使用率 15 第三章 結果與討論 17 3.1 pirScan核心運算程序 17 3.1.1 piRNA標靶預測程序 17 3.1.2 序列修改建議之生成程序 20 3.2 piRNA標靶預測功能網頁呈現 23 3.2.1 網站架構 23 3.2.2 輸入頁面 25 3.2.3 預測結果頁面 27 3.3 序列修改之建議功能網頁呈現 32 3.3.1 序列修改設計頁面 32 3.3.2 重新掃描結果 34 3.3.3 序列修改重新設計 42 3.4 實例探討 44 第四章 結論與未來展望 51 4.1 結論 51 4.2 未來展望 52 參考文獻 53 附錄 i

    [1] S. Brenner, "The genetics of Caenorhabditis elegans," GENETICS, vol. 77, no. 1, pp. 71-94, 1974.
    [2] K. A. Corsi, "A Biochemist’s Guide to C. elegans," Anal Biochem, vol. 359, no. 1, pp. 1-17, 2006.
    [3] T. Stiernagle, "Maintenance of C. elegans," in Wormbook, 2006.
    [4] 郭承儒、陳怡偉、陳昌熙(2013)。蟲蟲危機–以線蟲做為模式生物。科學發展,487:48-52 頁
    [5] T. C. e. S. Consortium, "Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology," Science, vol. 282, no. 5396, pp. 2012-2018, 1998.
    [6] M. C. Phillips, C. K. Brown, E. B. Montgomery, G. Ruvkun and A. T. Montgomery, "piRNAs and piRNA-dependent siRNAs protect conserved and essential C. elegans genes from misrouting into the RNAi pathway," Dev Cell, vol. 34, no. 4, pp. 457-465, 2015.
    [7] J. G. Ruby, C. Jan, C. Player, M. J. Axtell, W. Lee, C. Nusbaum, H. Ge and D. P. Bartel, "Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans," Cell, vol. 127, no. 6, pp. 1193-1207, 2006.
    [8] M. E. Weick and A. E. Miska, "piRNAs: from biogenesis to function," Development, vol. 141, no. 18, pp. 3458-3471, 2014.
    [9] H. Siomi and C. M. Siomi, "On the road to reading the RNA-interference code," Nature, vol. 457, no. 7228, pp. 396-404, 2009.
    [10] Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, et al., "A novel class of small RNAs bind to MILI protein in mouse testes," Nature, vol. 442, pp. 203-207, 2006.
    [11] Girard A, Sachidanandam R, Hannon GJ, Carmell MA, "A germline-specific class of small RNAs binds mammalian Piwi proteins," Nature, vol. 442, pp. 199-202, 2006.
    [12] Grivna ST, Beyret E, Wang Z, Lin H, "A novel class of small RNAs in mouse spermatogenic cells," Genes Dev, vol. 20, no. 13, pp. 1709-1714, 2006.
    [13] Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H, "Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes," Genes Dev, vol. 20, no. 13, pp. 1732-1743, 2006.
    [14] P. . J. Batista, J. G. Ruby, J. M. Claycomb, R. Chiang, N. Fahlgren, K. D. Kasschau, D. A. Chaves, W. Gu, J. J. Vasale, S. Duan, D. C. Jr, S. Luo, G. P. Schroth, J. C. Carrington, D. P. Bartel and C. C. Mello, "PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans," Mol. Cell, vol. 31, no. 1, pp. 67-78, 2008.
    [15] P. P. Das, P. M. Bagijn, D. L. Goldstein, R. J. Woolford, J. N. Lehrbach, A. Sapetschnig, R. H. Buhecha, J. M. Gilchrist, L. K. Howe, R. Stark, N. Matthews, E. Berezikov, F. R. Ketting, S. Tavaré and A. E. Miska, "Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline," Mol Cell, vol. 31, no. 1, pp. 79-90, 2008.
    [16] G. J. Ruby, C. Jan, C. Player, J. M. Axtell, W. Lee, C. Nusbaum, H. Ge and P. D. Bartel, "Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans," Cell, vol. 127, no. 6, pp. 1193-1207, 2006.
    [17] G. Wang and V. Reinke, "A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis," Curr Biol, vol. 18, no. 12, pp. 861-867, 2008.
    [18] G. Cecere, X. G. Zheng, R. A. Mansisidor, E. K. Klymko and A. Grishok, "Promoters recognized by forkhead proteins exist for individual 21U-RNAs," Molecular Cell, vol. 47, no. 5, pp. 734-745, 2012.
    [19] W. Tang, S. Tu, H.-C. Lee, Z. Weng and C. C. Mello, "The RNase PARN-1 Trims piRNA 3′ Ends to Promote Transcriptome Surveillance in C. elegans," Cell, vol. 164, no. 5, pp. 974-984, Feb 2016.
    [20] D. M. Horwich, C. Li, C. Matranga, V. Vagin, G. Farley, P. Wang and D. P. Zamore, "The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC," Curr Biol, vol. 17, no. 14, pp. 1265-1272, 2007.
    [21] Y. Kirino and Z. Mourelatos, "Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini," Nat Struct Mol Biol, vol. 14, no. 4, pp. 347-348, 2007.
    [22] T. Ohara, Y. Sakaguchi, T. Suzuki, H. Ueda, K. Miyauchi and T. Suzuki, "The 3' termini of mouse Piwi-interacting RNAs are 2'-O-methylated," Nat Struct Mol Biol, vol. 14, no. 4, pp. 349-350, 2007.
    [23] K. Saito, Y. Sakaguchi, T. Suzuki, H. Siomi and C. M. Siomi, "Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends," Genes Dev, vol. 21, no. 13, pp. 1603-1608, 2007.
    [24] M. P. Bagijn, L. D. Goldstein, A. Sapetschnig, E. M. Weick, S. Bouasker, N. J. Lehrbach, M. J. Simard and E. A. Miska, "Function, Targets, and Evolution of Caenorhabditis elegans piRNAs," Science, vol. 337, no. 6094, pp. 574-578, 2012.
    [25] H. C. Lee, W. Gu, M. Shirayama, E. Youngman, D. C. Jr and C. C. Mello, "C. elegans piRNAs Mediate the Genome-wide Surveillance of Germline Transcripts," Cell, vol. 150, no. 1, pp. 78-87, 2012.
    [26] Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr., Mello CC., "piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C. elegans Germline," Cell, vol. 150, no. 1, pp. 65-77, 2012.
    [27] Luteijn M J, van Bergeijk P, Kaaij L J, et al., "Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans," EMBO J, vol. 31, pp. 3422-3430, 2012.
    [28] Gu W, Shirayama M, Conte D Jr, et al., "Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans," Mol Cell, vol. 36, pp. 231-244, 2009.
    [29] P. Zhang, J. Y. Kang, T. L. Gou, J. Wang, Y. Xue, G. Skogerboe, P. Dai, W. D. Huang, R. Chen, D. X. Fu, F. M. Liu and S. He, "MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes," Cell Res, vol. 25, no. 2, pp. 193-207, 2015.
    [30] P. M. Bagijn, D. L. Goldstein, A. Sapetschnig, M. E. Weick, S. Bouasker, J. N. Lehrbach, J. M. Simard and A. E. Miska, "Function, Targets, and Evolution of Caenorhabditis elegans piRNAs," Science, vol. 337, no. 6094, pp. 574-578, 2012.
    [31] D. Zhang, S. Tu, M. Stubna, W. S. Wu, W. C. Huang, Z. Weng and H. C. Lee, "The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes," Science, vol. 359, no. 6375, pp. 587-592, 2018.
    [32] Kelly, W. G. and Fire, A, "Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans," Development, vol. 125, no. 13, pp. 2451-2456, 1998.
    [33] Merritt, C., Gallo, C. M., Rasoloson, D. ,and Seydoux, G., "Transgenic solutions for the germline," in WormBook, 2010.
    [34] Bartel, D. P., "MicroRNAs: target recognition and regulatory functions," Cell, vol. 136, no. 2, pp. 215-233, 2009.
    [35] Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M. et al., "Combinatorial microRNA target predictions," Nat. Genet., vol. 37, no. 5, pp. 495-500, 2005.
    [36] Huang, J. C., Babak, T., Corson, T. W., Chua, G., Khan, S., Gallie, B. L., Hughes, T. R., Blencowe, B. J., Frey, B. J. ,and Morris,Q.D., "Using expression profiling data to identify human microRNA targets," Nat. Methods, vol. 4, pp. 1045-1049, 2007.
    [37] Coronnello, C. and Benos, P. V., "ComiR: Combinatorial microRNA target prediction tool," Nucleic Acids Res, vol. 41, pp. 159-164, 2013.
    [38] "WormBase," [Online]. Available: http://www.wormbase.org/.
    [39] W. Gu, H. C. Lee, D. Chaves, E. M. Youngman, G. Pazzour, D. C. Jr and C. C. Mello, "CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors," Cell, vol. 151, no. 7, pp. 1488-1500, 21 Dec 2012.
    [40] Z. Shi, T. S. Montgomery, Y. Qi and G. Ruvkun, "High-throughput sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in nematodes," Genome research, vol. 23, pp. 497-508, 2013.
    [41] K. R. B. Paul M Sharp, "Codon Usage in C. elegans," in C. elegans II, 2 ed., 1997.
    [42] Z. E. Shen, H. Chen, R. A. Ozturk, S. Tu, M. Shirayama, W. Tang, H. Y. Ding, S. Y. Dai, Z. Weng and C. C. Mello, "Identification of piRNA Binding Sites Reveals the Argonaute Regulatory Landscape of the C. elegans Germline," Cell, vol. 172, no. 5, pp. 937-951, 2018.
    [43] H. Li and R. Durbin, "Fast and accurate long-read alignment with Burrows-Wheeler transform," Bioinformatics, vol. 26, no. 5, pp. 589-595, 2010.
    [44] Claycomb JM., "Caenorhabditis elegans small RNA pathways make their mark on chromatin," DNA Cell Biol, vol. 31, no. 31, 2012.
    [45] M. Seth, M. Shirayama, W. Gu, T. Ishidate, D. Conte and C. C. Mello, "The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression," Dev Cell, vol. 27, no. 6, pp. 656-663, 2013.
    [46] M. D. Kasper, E. K. Gardner and V. Reinke, "Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs," Epigenetics, vol. 9, no. 1, pp. 62-74, 2014.
    [47] C. L. Li, T. S. Okino, H. Zhao, D. Pookot, F. R. Place, S. Urakami, H. Enokida and R. Dahiya, "Small dsRNAs induce transcriptional activation in human cells," Proc Natl Acad Sci U S A, vol. 103, no. 46, pp. 17337-17342, 2006.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE