| 研究生: |
劉柏宏 Liu, Po-Hung |
|---|---|
| 論文名稱: |
伊州彈性指數 (I-FIT) 與開裂試驗 (CTindex)
評估改質瀝青老化對開裂之影響 Effect of Aging on Cracking Behavior of Modified Asphalt Concrete Evaluated by Illinois Flexibility Index Test (I-FIT) and Cracking Test (CTindex) |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 伊州彈性指數 、開裂試驗 、回收低密度聚乙烯 、橡膠粉 、老化 |
| 外文關鍵詞: | Illinois Flexibility Index, Cracking Test, recycled low-density polyethylene, rubber powder, aging |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用間接張力強度、回彈模數、伊州彈性指數與開裂等試驗探討老化對添加回收低密度聚乙烯 (RPE) 與橡膠粉 (CR) 瀝青混合料之影響,以AC-20與添加5%苯乙烯-丁二烯-苯乙烯 (SBS) 之瀝青混合料作為對照組。結果顯示添加SBS、RPE和CR有助於抑制老化對間接張力強度之影響,但相同老化程度下各瀝青混合料之間接張力強度差異並不顯著;回彈模數試驗說明添加RPE和CR有助於降低回彈模數受老化之影響,且相同老化程度下添加RPE與CR對回彈模數影響相當大;長期老化對伊州彈性指數與開裂試驗影響顯著,長期老化下添加少量RPE對瀝青混合料伊州彈性指數具有良好發展,過多則效果有限,而開裂試驗結果說明添加CR與少量RPE之混合料在未老化與長期老化階段具有提升抗開裂能力之效用,RPE添加量過高則會失去此效用。本研究瀝青混合料對老化程度或瀝青種類皆對間接張力強度無顯著性;將瀝青種類作為隨機變數較能呈現回彈模數顯著性,老化程度則否;伊州彈性指數與開裂試驗對老化程度和瀝青種類皆較能有效呈現顯著差異。
In this study, indirect tensile strength, resilience modulus, Illinois Flexibility Index and cracking tests were used to explore the effects of aging on the addition of recycled low-density polyethylene (RPE) and rubber powder (CR) asphalt mixtures. AC-20 and added 5% styrene-butadiene-styrene (SBS) asphalt mixture was used as a control group. Adding a small amount of RPE under long-term aging has a good development on the elasticity index of asphalt mixture. If too much, the effect is limited. The results of the cracking test show that the mixture with CR and a small amount of RPE is effective. The non-aging and long-term aging stages have the effect of improving the anti-cracking ability. If the amount of RPE is too high, this effect will be lost.
施工綱要規範 (2019) 第02741章 瀝青混凝土之一般要求,交通部公路總局,台北。
施工綱要規範 (2019) 第02796章 密級配改質瀝青混凝土鋪面,行政院公共工程委員會,台北。
Altieb, Z. A., M. M. A. Aziz, K. A. B. Kassim, H. B. Jibrin (2016) a short review on using crumb rubber as modification of bitumen binder. JurnalTeknologi (Sciences & Engineering),Vol.78(7-3), pp.29-36.
BatIoja - Alvarez, D., J. Lee, and J. E. Haddock (2019) Understanding the Illinois flexibility index test (I-FIT) using Indiana asphalt mixtures. Transportation Research Record, Vol.00(0), pp.1-10.
Brown, E. R., P. S. Kandhal, F. L. Roberts, Y. R. Kim, D. Y. Lee, and T. W. Kennedy (2009) Hot Mix Asphalt Materials, Mixture Design, and Construction, 3rd edition, Lanham, Maryland.
Chin, C., and P. Damen (2019) Viability of Using Recycled Plastics in Asphalt and Sprayed Sealing Applications. Austroads Technical Report AP-T351-19, Austroads, Sydney NSW, Australia.
Costa, L. M. B., H. M. R. D. Silva, J. Peralta, and J.R.M. Oliveira (2019) Using waste polymers as a reliable alternative for asphalt binder modification – Performance and morphological assessment. Construction and Building Materials, Vol.198 , pp.237-244.
Faisal, H. A., and A. A. Jamal (1992) Variations in measured resilient modulus of asphalt mixes. Journal of Materials in Civil Engineering. Vol. 4(4), pp.343-352.
Hunter, R. N., A. Self, and J. Read (2015) The Shell Bitumen Handbook, 6th edition, London.
Kumbargeri, Y. S., and K. P. Biligiri (2016) Rational performance indicators to evaluate asphalt materials’ aging characteristics. Journal of Materials in Civil Engineering. Vol. 28(12), pp.1-9.
Ling C., D. Swiertz, T. Mandal, P. Teymourpour, and H. Bahia (2017) Sensitivity of the Illinois Flexibility Index Test to Mixture Design Factors. Transportation Research Record, Vol 2631,pp.153-159.
Movilla-Quesada D., A.C. Raposeiras, L.T. Silva-Klein, P. Lastra-González, D. Castro-Fresno (2019) Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Management, Vol.87, pp.751-760.
Nemati, R., K. Haslett, E. V. Dave, and J.E. Sias (2019) Development of a rate-dependent cumulative work and instantaneous power-based asphalt cracking performance index. Road Materials and Pavement Design,Vol.20(S1).
Nobinur Rahman, Md., M. Ahmeduzzaman, M. A. Sobhan, T. U. Ahmed (2013) Performance evaluation of waste Polyethylene and PVC on hot asphalt mixtures. American Journal of Civil Engineering and Architecture, Vol.1(5),
pp.97-102.
Peacock, A. J. (2000) Handbook of Polyethylene: Structures, Properties, and Applications, 1st Edition, Baytown, Texas.
Polacco, G., S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto (2005) Asphalt modification with different polyethylene-based polymers. European Polymer Journal, Vol.41, pp.2831-2844.
Rooholamini, H., R. Imaninasab and M. Vamegh (2019) Experimental analysis of the influence of SBS / nanoclay addition on asphalt fatigue and thermal performance. International Journal of Pavement Engineering. Vol.20(6), pp.628−637.
Shakhnazarli, R. Z., N. Ya. Ishchenko, Kh. G. Nazaraliev, B. A. Mamedov, and A. M. Guliev (2009) Polymer–bitumen compounds with crumb rubber, secondary Polyethylene, and Polyamide fiber waste. Russian Journal of Applied Chemistry. Vol.82(7), pp.1310−1313.
Sivakumar, M., and M. V. L. R. Anjaneyulu (2019) compactability and mechanical properties of LNA-modified asphalt concrete. Journal of Transportation Engineering. Vol. 145(2), pp.1-13.
Taherkhani, H., and M. R. Arshadi (2019) Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate. Road Materials and Pavement Design. Vol.20(2), pp.381-398.
Urquhart, R., and K. Y. Khoo (2013) Investigations into the Effects of Polymer Segregation and Degradation in Polymer Modified Binders. Austroads Technical Report AP-T227-13, Austroads, Sydney NSW, Australia.
Zhou, F. (2019) Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance. IDEA Program Final Report NCHRP 20-30/IDEA 195, Transportation Research Board, Washington, D.C.
校內:2025-09-01公開