簡易檢索 / 詳目顯示

研究生: 羅之琪
Luo, Chih Chi
論文名稱: 多孔性瀝青混凝土績效及冷拌材料作為維修之評估
Performance of Porous Asphalt Concrete (PAC) and Evaluation of Cold-Mix Materials Applied to PAC Maintenance
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 131
中文關鍵詞: 冷拌多孔隙瀝青混凝土冷拌黏結料
外文關鍵詞: Cold-Mix Porous Asphalt Concrete, Cold-Mix Asphalt Binder
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔性瀝青混凝土(Porous Asphalt Concrete, PAC)由開放級配構成具有高比例孔隙的鋪面結構,藉由連通的孔隙,雨水可從鋪面結構中排出,避免在鋪面上形成水膜而發生行車打滑與水沫飛濺的現象,增加能見度,提高防滑性。然而,隨著鋪面的開放使用,PAC鋪面可能因擠壓變形或是受水侵害而造成坑洞,需要定期維護或是緊急修補。而冷拌之多孔性瀝青混凝土基本性質卻缺乏相關研究,無法比照冷拌密級配瀝青混凝土之規範,因此需要研擬冷拌多孔性瀝青混凝土作為維修材料之規範。
    本研究首先探討國道6號現地試驗部分,建立PAC的長期績效。現地數據顯示,使用瀝青黏度較低的路段,孔隙較容易受到壓實,影響現地透水量、孔隙率及車轍量,而各路段的平坦度及抗滑能力仍維持在良好情況。再以2種最大標稱粒徑(Nominal Maximum Aggregate Size,NMAS)進行配比設計,以4種不同冷拌瀝青黏結料進行實驗。參考國內外冷拌瀝青混凝土試驗項目,建立冷拌多孔隙瀝青混凝土規範,並探討不同的養護時間和溫度對冷拌多孔性瀝青混凝土材料性質的影響。冷拌瀝青黏結料之揮發速率及黏度特性影響冷拌多孔性瀝青混凝土的各項工程性質,而在常溫下評估冷拌多孔性瀝青混凝土的工程性質,以表現冷拌多孔性瀝青混凝土的使用情形,較接近現地情況。試驗結果顯示,由於PAC的材料組成特性,常溫下的穩定值、間接張力值偏低,但是車轍試驗顯示高性能冷拌PAC與冷拌密級配瀝青混凝土相當,因此建議以車轍與簡易車轍試驗作為評估冷拌PAC的方法,也較符合現地狀況。規範建議項目為40℃試驗溫度穩定值試驗(110℃,養護24hr),較能顯現冷拌PAC終期性質,高性能冷拌PAC穩定值研擬規範為600kgf,一般型冷拌PAC穩定值規範為350kgf;常溫下車轍實驗的動態穩定值規範設為3500(次/mm) ;簡易車轍試驗在泡水條件下較能模擬現地修補情形,能呈現冷拌材料受水份影響程度,建議動態穩定值規範在泡水條件下要高於300(次/mm)。

    Porous Asphalt Concrete (PAC) constituted by the open gradation with a high proportion of pore structure. By the connecting pores, water can be discharged from the pavement to prevent hydroplaning, decrease splash and spray, increase visibility and improve skid resistance. However, after opening to traffic, PAC may be compressed and have potholes caused by water damage, need regular maintenance or emergency repair. Cold-mix PAC lacks of basic research, can not compare to cold-mix dense-graded asphalt concrete specifications, needs to establish cold-mix PAC specifications as a repair material.

    The first part of this study is field tests on National Highway No. 6 to establish PAC long-term performance, shows the section using lower asphalt viscosity is more susceptible to compaction, affected on permeability, porosity and rutting. Each section remains good condition of IRI test and Skid-resistance capability. Using 2 different nominal maximum aggregate size (NMAS) for mixture design and four different cold-mix asphalt binder material for experiments, reference to domestic cold-mix asphalt concrete quality standards, establish cold-mix PAC specifications, study the different curing time and temperature on the material properties of cold-mix PAC. Material properties of cold-mix asphalt binder, including evaporation rate and viscosity characteristics, affect cold-mix PAC engineering properties. And tests at room temperature to evaluate the cold-mix PAC, is more closer to the in-site situation.

    The results showed that, due to PAC material properties, the value of Marshall Stability and ITS at room temperature is much lower than Hot-Mix PAC. In wheel tracking test, high performance cold-mix PAC and cold-mix dense-graded asphalt concrete are approximately equal strength, thus, suggest wheel tracking test and simple wheel tracking test as evaluation tests of cold-mix PAC, also more simulate to the field. Recommended specification tests include 1)Marshall Stability test at 40 ℃(after curing at 110 ℃ 24hr), to show the final durability. 2)Wheel tracking test at room temperature. 3)Simple wheel tracking test, after immersed in water, be able to simulate the repair situation in rainy weather, shows the influence of water on cold-mix materials.

    目錄 摘要 I 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-5 1.3 研究目的 1-5 1.4 研究範圍 1-5 第二章 文獻回顧 2-1 2.1 多孔性瀝青混凝土與組成材料 2-1 2.2 多孔性瀝青混凝土的級配比較 2-3 2.3 冷拌瀝青混凝土 2-4 2.3.1 冷拌瀝青混凝土配合設計 2-5 2.3.2 冷拌瀝青混凝土相關規範 2-8 2.4 評估冷拌瀝青混凝土性質的方法 2-12 2.4.1 Minegishi方法評估冷拌瀝青混凝土 2-12 2.4.2 其他不同養治方法對冷拌瀝青混凝土的影響 2-19 第三章 研究方法與實驗 3-1 3.1 研究方法 3-1 3.2 國道6號PAC鋪面現地試驗 3-3 3.2.1 現地透水試驗 3-4 3.2.2 車轍量試驗 3-7 3.2.3 平坦度試驗 3-7 3.2.4 抗滑性試驗 3-8 3.3 實驗室冷拌瀝青混凝土製作 3-9 3.4 基本物性試驗 3-10 3.4.1 瀝青黏結料試驗 3-10 3.4.2 粒料物性試驗 3-12 3.5 多孔性瀝青混凝土配合設計 3-13 3.5.1 選擇嘗試級配與嘗試瀝青含量 3-13 3.5.2 選定目標孔隙率及級配曲線 3-14 3.5.3 決定最佳瀝青含量 3-14 3.5.4 瀝青混合料垂流試驗 3-14 3.5.5 Cantabro磨損試驗 3-15 3.6 柔性鋪面維護及補強技術之研究試驗項目 3-16 3.6.1 穩定值、流度值試驗 3-17 3.6.2 滯留強度試驗 3-18 3.7 日本Minegishi試驗方式 3-18 3.7.1 間接張力試驗 3-18 3.7.2 無圍壓縮試驗 3-20 3.7.3 工作性試驗 3-22 3.7.4 車轍輪跡試驗 3-24 3.7.5 簡易車轍試驗 3-26 第四章 結果與討論 4-1 4.1 國道6號PAC鋪面績效評估 4-1 4.1.1 功能性評估 4-4 4.1.2 耐久性評估 4-12 4.1.3 安全性評估 4-14 4.2 材料基本物性試驗 4-15 4.2.1 瀝青黏結料物性試驗 4-15 4.2.2 冷拌瀝青黏結料揮發量與黏度探討 4-17 4.2.3 粒料物性試驗 4-22 4.3 多孔性瀝青混凝土配合設計 4-23 4.3.1 選定目標孔隙率及級配曲線 4-24 4.3.2 決定最佳瀝青含量 4-25 4.4 以「柔性鋪面維護及補強技術研究」方式評估冷拌PAC 4-28 4.4.1 穩定值試驗結果 4-28 4.4.2 穩定值滯留強度指數 4-30 4.4.3 流度值試驗結果 4-31 4.5 Minegishi方法評估冷拌PAC 4-32 4.5.1 穩定值試驗結果 4-33 4.5.2 間接張力試驗結果 4-35 4.5.3 無圍壓縮試驗結果 4-36 4.5.4 工作性試驗結果 4-37 4.5.5 車轍試驗結果 4-39 4.5.6 簡易車轍試驗結果 4-41 4.6 冷拌PAC之規範研擬 4-44 4.6.1 冷拌PAC之規範 4-45 4.6.2 冷拌黏結料之規範 4-46 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-I

    工程會(2009),施工綱要規範,02798V10,多孔隙瀝青混凝土鋪面,台灣。
    交通部,公路工程施工規範(2010),冷拌乳化瀝青混凝土路面。
    交通部,公路養護手冊(2003),柔性鋪面養護。
    社團法人日本道路協會(1973) 簡易鋪裝綱要,社團法人日本道路協會出版,pp.22-41。
    林志棟、王劍能、張家瑞、洪境聰(2010) 柔性鋪面維護及補強技術之研究,交通部出版,台北。
    Alvarez, A. E., Epps-Martin, A., Estakhri, C. and Izzo, R. (2010). "Evaluation of Durability Tests for Permeable Friction Course Mixtures." International Journal of Pavement Engineering, Vol.11, pp.49-60.
    Alvarez, A. E., Martin, A. E., Estakhri, C. K., Button, J. W., Glover, G. J. and Jung, S. H. (2006). Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses. Report No. FHWA TX-06/0-5262-1, Texas Transportation Institute, Texas.
    Asphalt Institute. (1997). Asphalt Cold Mix Manual. Manual Series MS-14, Lexington, Kentucky.
    Asphalt Institute. (2003). Mix Design Methods for Asphalt Concrete and Other Hot Mix Types.Manual Series MS-2. Manual Series MS-2, Lexington, Kentucky.
    Barrett, M. E. (2008). "Effects of a Permeable Friction Course on Highway Runoff." Journal of Irrigation and Drainage Engineering, Vol.134, pp.646-651.
    Button, J. W., Fernando, E. G. and Middleton, D. R. (2004). Synthesis of Pavement Issues Related to High-Speed Corridors, Report No. 0-4756-1, Texas Transportation Institute, Texas.
    Field, R. (1982). "Porous Pavement: Research, Development, and Demonstration." Journal of Transportation Engineering, Vol.108, pp.244–258.
    Hassan, H. F. and Al-Jabr, K. S. (2005). "Effect of Organic Fibers on Open-graded Friction Course Mixture Properties." International Journal of Pavement Engineering, Vol.6, pp.67-75.
    Huber, G. (2000). Performance Survey on Open-Graded Friction Course Mixes. Synthesis of Highway Practice 284., National Cooperative Highway Research Program. Transportation Research Board., Washington, D.C.
    Inamoto, H., Nakatsuka, M., Jomoto, M. and Kuno, A. (2010). High-strength Cold Laid Asphalt Mixture Applicable for Heavy Traffic Roads and Roads in Snowy and Cold Regions. The 11th International Conference on Asphalt Pavements. ISAP, Nagoya. (on CD-ROM)
    Katu, T. and Sasaki, S. (2010). Development of the New Cleaning Vehicle for Porous Asphalt. The 11th International Conference on Asphalt Pavements. ISAP, Nagoya. (on CD-ROM)
    Litzka, J. (2002). "Austrian Experiences with Winter Maintenance on Porous Asphalt." Proceedings of the Ninth International Conference on Asphalt Pavements. Copenhagen, Denmark.
    Liu, Q. and Cao, D. (2009). "Research on Material Composition and Performance of Porous Asphalt Pavement." Journal of Materials in Civil Engineering, Vol.21, pp.135-140.
    Minegishi, J., Takeda, T., Tatsushita, M., Ohki, H. and Wataya, S. (2010). A Study on Cold Mixtures for Pothole Repair in Tokyo. The 11th International Conference on Asphalt Pavements. ISAP, Nagoya. (on CD-ROM)
    Molenaar, A. A. A., Hagos, E. T. and van de Ven, M. F. C. (2010). "Effects of Aging on the Mechanical Characteristics of Bituminous Binders in PAC." Journal of Materials in Civil Engineering, Vol.22, pp.779-787.
    Nielsen, C. B., Larsen, H. E., Andersen, B., Bendtsen, H. and Hofman, R. (2005). Noise Reducing Pavements in Japan - Study Tour Report, Danish Road Institute, Denmark.
    Ruiz, A., Alberola, R., Pérez, F. and Sánchez, B. (1990). "Porous Asphalt Mixtures in Spain." Transportation Research Record, No.1265. pp.87-94.
    Shimeno, A. O. and Tanaka, T. (2010). Evaluation and Further Development of Porous Asphalt Pavement with 10 Years Experience in Japanese Expressways. The 11th International Conference on Asphalt Pavements. ISAP, Nagoya. (on CD-ROM)
    Shirke, N. A. and Shuler, S. (2009). "Cleaning Porous Pavements Using a Reverse Flush Process." Journal of Transportation Engineering, Vol.135, pp.832-838.
    Suresha, S. N., George, V. and Shankar, A. U. R. (2009). "Evaluation of Properties of Porous Friction Course Mixes for Different Gyration Levels." Journal of Materials in Civil Engineering, Vol.21, pp.789-796.
    Suresha, S. N., George, V. and Shankar, A. U. R. (2010). "Laboratory and Theoretical Evaluation of Clogging Behaviour of Porous Friction Course Mixes." International Journal of Pavement Engineering, Vol.11, pp.61-70.
    Thanaya, I. N. A., Zoorob, S. E. and Forth, J. P. (2009). "A Laboratory Study on Cold-Mix, Cold-Lay Emulsion Mixtures." Institution of Civil Engineers, Transport 162, Issue TR1. pp.47–55.

    下載圖示 校內:立即公開
    校外:2013-08-18公開
    QR CODE