簡易檢索 / 詳目顯示

研究生: 許哲維
Hsu, Che-Wei
論文名稱: 一個基於上板殘值增益校正之八位元每秒取樣十六億次快閃輔助逐漸趨近時間交錯式類比數位轉換器
A 1.6-GS/s 8-bit Flash Assisted SAR Time-Interleaved Analog-to-Digital Converter with Top-plate Residue Based Gain Calibration
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 122
中文關鍵詞: 類比數位轉換器快閃輔助逐漸趨近式時間交錯式增益校正
外文關鍵詞: analog-to-digital converter, Flash-SAR, time-interleaved, gain calibration
相關次數: 點閱:196下載:66
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個四通道8位元每秒取樣十六億次的快閃輔助逐漸趨近時間交錯式類比數位轉換器。本設計採用了結合快閃與逐漸趨近式的複合式架構,得利於快閃操作,單通道的取樣速度可提升至每秒4千萬次。此多通道類比數位轉換器將多種不匹配效應都納入設計考量,包含補偏、增益以及時序偏移等不匹配。此設計使用改良後的拔靴式取樣電路來抑制時序偏移;並且加入了簡單的電路來實現類比式背景補偏校正;同時提出了全新的增益校正技巧,藉由在逐漸趨近式類比數位轉換器中創造出和增益單調正相關的訊號,並基於此訊號來判斷增益不匹配,其只需簡單地控制電容陣列便可完成增益補償,面積以及功耗負擔極小。
    本設計以台積電40奈米CMOS製程進行晶片下線驗證,晶片面積為0.29mm2。當晶片操作在輸入電壓1伏特與取樣速度十六億次時消耗功率為16.76mW,測試結果顯示在低輸入頻率下校正開啟前後訊號雜訊失真比/有效位元能從34.59 dB /5.45位元上升到44.15-dB /7.04 位元,換算得到的轉換效率為78.93 fJ/conversion-step。而在奈奎斯特(Nyquist-rate)輸入頻率下,可以達到38.32 dB的訊號雜訊失真比,換算得到的轉換效率為155.9 fJ/conversion-step。

    This thesis presents a 4-channel 8-bit 1.6-GS/s Flash assisted SAR Time-Interleaved ADC (TI-ADC). The architecture in each channel is a hybrid combination of flash ADC for enhancing the operating speed and successive-approximation register ADC for saving the power consumption. Channel mismatches including offset, gain and timing-skew mismatches have been taken into consideration in designing the 4-channel TI-ADC. A modified bootstrap circuit is used to inhibit timing-skew mismatch. A background analog calibration scheme without inducing complicated circuitries is employed to solve the offset mismatch. A background gain calibration method is proposed to reduce gain mismatch in this work. This proposed method detects a common-mode voltage signal correlated with gain error of a SAR ADC and correct gain mismatch by simple calibration capacitor array, which costs only a little power and area overhead.
    A proof-of-concept chip prototype was designed and fabricated in TSMC 40-nm technology. The chip area is 0.29mm2. At 1.6 GS/s, the ADC consumes 16.76mW from a 1-V supply. Measurement results show the proposed gain-mismatch calibration is able to enhance SNDR from 34.59 dB to 44.15 dB , which leads to a FoM of 78.93 fJ/conversion-step. At Nyquist input frequency, the SNDR is 38.32 dB resulting a FoM of 155.9 fJ/conversion-step.

    摘 要 III Abstract IV List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Hybrid Architecture 4 1.3 Time-Interleaved ADCs 5 1.4 Organization 7 Chapter 2 SAR ADC 8 2.1 Introduction of SAR ADC 9 2.2 Speed analysis 11 2.2.1 Comparison Time 13 2.2.2 Comparator Reset Time 16 2.2.3 DAC Settling Time 17 2.2.4 Logic Delay 19 2.3 Techniques of Speed Enhancement 20 2.3.1 Loop-unrolled Technique 20 2.3.2 Redundancy Algorithm 22 2.3.3 Control Logic Design 30 2.4 Hybrid Architecture 32 2.4.1 Pipeline-SAR ADC 32 2.4.2 Sub-ranging SAR ADC 34 2.4.3 Flash-SAR ADC 36 Chapter 3 Time-interleaved ADC 38 3.1 Introduction of Time-interleaved ADCs 39 3.1.1 Single Channel Sampling 39 3.1.2 Time-Interleaved Sampling 42 3.2 Mismatch of TI-ADCs 47 3.2.1 Offset Mismatch 48 3.2.2 Gain Mismatch 50 3.2.3 Timing-skew 53 3.3 Calibration For TI Mismatch 56 3.3.1 Offset Calibration 57 3.3.2 Gain Calibration 59 3.3.3 Timing-skew Calibration 63 Chapter 4 A 1.6-GS/s 8b Time-Interleaved Flash-SAR ADC with Top-Plate Residue Based Gain Calibration 68 4.1 Introduction 68 4.2 Architecture And Design Consideration 70 4.2.1 Flash Assisted Time-Interleaved SAR 70 4.2.2 Redundancy Algorithm 72 4.2.3 DAC Switching Method 75 4.3 Techniques For Channel Mismatch 77 4.3.1 Low-skew Bootstrapped switch 77 4.3.2 Background Offset Calibration 79 4.3.3 Proposed Background Gain Calibration 81 4.4 Key Circuit Building Block 85 4.4.1 Bootstrapped Switch 85 4.4.2 Dynamic Comparators 87 4.4.3 Digital Control Logic Circuits 89 4.4.4 Clock Generator 92 4.4.5 Capacitive DAC 93 Chapter 5 Simulation and Measurement Results 95 5.1 Layout and Chip Floor Plan 95 5.2 Simulation Results 98 5.3 Die Micrograph and Measurement Setup 101 5.4 Measurement Results 105 Chapter 6 Conclusion and Future Works 113 Bibliography 116

    [1] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [2] S. Palermo, S. Hoyos, S. Cai, S. Kiran and Y. Zhu, “Analog-to-Digital Converter-Based Serial Links: An Overview,” IEEE Solid-State Circuits Magazine, vol. 10, no. 3, pp. 35-47, Summer 2018, doi: 10.1109/MSSC.2018.2844603.
    [3] T. Kobayashi et al., ‘‘A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,’’ IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523–527, April 1993.
    [4] B. Wicht et al., “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 11481158, Jul. 2004.
    [5] P. Nuzzo et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits and Syst. I, vol. 55, no. 6, pp. 1441–1454, Jun. 2008.
    [6] Asad Abidi et al., “Understanding the regenerative comparator circuit,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2014, pp. 1–8.
    [7] G. Van der Plas et al., ‘‘A 150 MS/s 133 W 7 bit ADC in 90 nm Digital CMOS,’’ IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2631–2640, Dec. 2008.
    [8] Tao Jiang et al., “Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR ADC in 40nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2010, pp. 1−4.
    [9] T. Waho et al., “Non-binary successive approximation analog-to-digital converters: A survey,” in Proc. IEEE Int. Symp. Multiple-Valued Logic (ISMVL), 2014, pp. 73–78.
    [10] W. Liu et al., “A 12-bit 50-MS/s 3.3mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
    [11] F. Kuttner et al., “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-µm CMOS,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 176−177.
    [12] S.-W. M. Chen et al., “A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006.
    [13] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
    [14] T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2010, pp. 196199.
    [15] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93.
    [16] Toru Okazaki, et al., “A Design Technique for a High-speed SAR ADC Using Non-binary Search Algorithm and Redundancy,” in Proc. IEEE Asia Pacific Microwave Conf. (APMC), Dec. 2013, pp. 506508.
    [17] Hyeok-Ki Hong et al., “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1−4.
    [18] C.-C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 386–387.
    [19] C.-C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731740, Dec. 2010.
    [20] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
    [21] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC) Dig. Tech. Papers, Nov. 2013. pp. 289–292.
    [22] T. B. Cho and P. R. Gray, “A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 166-172, March 1995, doi: 10.1109/4.364429.
    [23] Jipeng Li and Un-Ku Moon, “Background calibration techniques for multistage pipelined ADCs with digital redundancy,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 9, pp. 531-538, Sept. 2003, doi: 10.1109/TCSII.2003.816921.
    [24] C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859-869, April 2011, doi: 10.1109/JSSC.2011.2108133.
    [25] Hung-Yen Tai et al., “A 0.85fJ/conversion-step 10b 200KS/s Subranging SAR ADC in 40nm CMOS,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 196-198.
    [26] Y.-S. Hu et al., “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s sub-ranging SAR ADC in 40nm CMOS,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC) Dig. Tech. Papers, 2014, pp. 81−84.
    [27] Y.-Z. Lin et al., “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2010, pp. 243–244.
    [28] P. J. A. Harpe et al., “A 0.47-1.6mW 5-bit 0.5-1 GS/s time-interleaved SAR ADC for low-power UWB radio,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1594–1602, July 2012.
    [29] M. El-Chammas et al., “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838-847, Mar. 2011.
    [30] A. Nazemi et al., “A 10.3 GS/s 6 bit (5.1 ENOB at Nyquist) time-interleaved pipelined ADC using open-loop amplifiers and digital calibration in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, 2008, pp. 18–19.
    [31] C.-H. Chan et al, “A 6 b 5 GS/s 4 interleaved 3 b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 365–377, Feb. 2016
    [32] Stepanovic, D. and Nikolic, B. “A 2.8 GS/s 44.6mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, Issue. 4, pp. 971–982, Jan. 2013.
    [33] P. Harpe et al., “Calibration of Ultra Low-Power Time-Interleaved SAR ADCs,” in Proc. IEEE New Circuits and Systems Conf. Dig. Tech. Papers (NEWCAS), 2012, pp. 361364.
    [34] M.-J. E. Lee et al., ‘‘Low-power area-efficient high-speed I/O circuit techniques,’’ IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1591–1599, Nov. 2000.
    [35] B. Sung et al., “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC) Dig. Tech. Papers, Nov. 2013, pp. 281–284.
    [36] J. A. McNeill et al., “Split ADC calibration for all-digital correction of time-interleaved ADC errors,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 344–348, May 2009.
    [37] S. M. Jamal, Daihong Fu, N. C.-J. Chang, P. J. Hurst and S. H. Lewis, “A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618-1627, Dec. 2002, doi: 10.1109/JSSC.2002.804327.
    [38] Y. Hesamiafshar and S. Momeni, “A new DFT based approach for gain mismatch detection and correction in time-interleaved ADCs,” in Proc. NORCHIP 2010, Tampere, Finland, 2010, pp. 1-4, doi: 10.1109/NORCHIP.2010.5669469.
    [39] L. Luo, S. Chen, M. Zhou and T. Ye, “A 0.014mm2 10-bit 2GS/s time-interleaved SAR ADC with low-complexity background timing skew calibration,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Kyoto, Japan, 2017, pp. C278-C279, doi: 10.23919/VLSIC.2017.8008507.
    [40] B. T. Reyes et al., “A 6-bit 2GS/s CMOS time-interleaved ADC for analysis of mixed-signal calibration techniques,” in Proc. IEEE 5th Latin American Symp. on Circuits and Systems, Santiago, Chile, 2014, pp. 1-4, doi: 10.1109/LASCAS.2014.6820267.
    [41] J. Nam, M. Hassanpourghadi, A. Zhang and M. S. Chen, “A 12-Bit 1.6, 3.2, and 6.4 GS/s 4-b/Cycle Time-Interleaved SAR ADC With Dual Reference Shifting and Interpolation,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1765-1779, June 2018, doi: 10.1109/JSSC.2018.2808244.
    [42] S. Kundu et al., “A 1.2 V 2.64 GS/s 8bit 39 mW skew-tolerant time-interleaved SAR ADC in 40 nm digital LP CMOS for 60 GHz WLAN,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), San Jose, CA, USA, 2014, pp. 1-4, doi: 10.1109/CICC.2014.6945992.
    [43] C. Hsu et al., “An 11b 800MS/s Time-interleaved ADC with,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 464-615
    [44] W. Liu et al., “A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 82-83.
    [45] K. Doris et al., “A 480mW 2.6GS/s 10b 65nm CMOS Time-Interleaved ADC with 48.5db SNDR up to Nyquist,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 180-182.
    [46] B. Razavi, “Design Considerations for Interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806-1817, Aug. 2013, doi: 10.1109/JSSC.2013.2258814.
    [47] S. Lee et al., “A 1GS/s 10b 18.9mW Time-Interleaved SAR ADC with Background Timing-Skew Calibration,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 384–385
    [48] H. Wei et al., “An 8 bit 4 GS/s 120 mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1751–1761, Aug. 2014.
    [49] V. H-C. Chen et al., “A 69.5mW 20GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32nm CMOS SOI,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 380–381, Feb. 2014.
    [50] N. Le Dortz et al., “A 1.62GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 57, pp. 386-387, 2014.
    [51] C. Chan, et al, “A 5.5mW 6b 5GS/s 4×-Interleaved 3b/cycle SAR ADC in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3
    [52] H. Hu, Y. Cheng and S. Chang, “A 10-bit 1-GS/s 2x-Interleaved Timing-Skew Calibration Free SAR ADC,” in Proc. 2019 IEEE Intl. Symp. on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702455.
    [53] S. Jiang, M. A. Do, K. S. Yeo and W. M. Lim, “An 8-bit 200-MSample/s Pipelined ADC With Mixed-Mode Front-End S/H Circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, July 2008, doi: 10.1109/TCSI.2008.916613.
    [54] G. Huang, S. Chang, C. Liu and Y. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013, doi: 10.1109/TVLSI.2012.2190117.
    [55] Y. Zhu et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010, doi: 10.1109/JSSC.2010.2048498.
    [56] J. Fang et al., “A 5GS/s 10b 76mW time-interleaved SAR ADC in 28nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), San Jose, CA, 2015, pp. 1-4.
    [57] N. L. Dortz, et al, “A 1.62GS/s Time-Interleaved SAR ADC with Digital Background Mismatch Calibration Achieving Interleaving Spurs Below 70dBFS,” in IEEE Intl. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 386-388.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE