簡易檢索 / 詳目顯示

研究生: 溫騰億
Wen, Teng-Yi
論文名稱: 添加劑及熱處理氣氛對二氧化錫濺鍍薄膜光電特性之影響
Effects of Additives and Heat-treating Atmospheres on Electrical and Optical Properties of RF-Sputtered Tin Dioxide Films
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 115
中文關鍵詞: 二氧化錫濺鍍
外文關鍵詞: SnO2, sputtering
相關次數: 點閱:49下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於透明導電氧化物薄膜具有低電阻率及可見光範圍高穿透率,應用範圍非常廣泛,其中,二氧化錫(SnO2)為一寬能階材料具優異光穿透特性。SnO2本質為n-type半導體,藉氧空缺存在提升材料導電性質,也可藉由摻雜其他元素來提升材料導電率。而本研究採用同時添加Sb2O3 與CuO 的SnO2靶材成分,並藉由射頻磁控濺鍍法濺鍍緻密化二氧化錫陶瓷靶材,沈積所需之薄膜,在本研究中,利用改變射頻磁控濺鍍參數(射頻功率及氧氣分率)、靶材組成不同(改變Sb2O3添加量改變)、後續不同氣氛熱處理對薄膜光電特性之影響。
    實驗結果顯示,在同時添加Sb2O3與CuO的SnO2靶材成分中,添加Sb2O3對於SnO2導電性質提升有幫助,對於靶材緻密化卻有負面影響,因此同時添加Sb2O3與CuO可製備兼具高緻密性(相對密度最高達98.9%)與良好導電性之SnO2靶材,而對合成之SnO2:Sb2O3:CuO陶瓷靶材所沈積SnO2:(Sb, Cu)薄膜,隨著Sb2O3添加量增加,薄膜光電性質皆降低,以(2Sb2Cu)靶材成分所製備薄膜具有最佳性質。此外,隨著射頻功率及氧氣分率參數條件改變,由於薄膜結晶性增加,有助於導電性質與光學性質的提升,而氧空缺的減少,卻導致電阻上升,因此,射頻功率為120W時及氧氣分率0%的參數條件,(2Sb2Cu)可得最佳電阻率2.5×10-2Ω-cm。
    為了進一步改善SnO2:(Sb, Cu)薄膜之光電性質,初鍍膜分別在O2(氧化氣氛)及95%N2+5%H2(還原氣氛)熱處理,可知SnO2:(Sb, Cu)薄膜隨著熱處理氣氛之不同,而有明顯的光電性質變化,在氧化氣氛下,薄膜明顯電阻上升至4.5×10-1Ω-cm,而可見光穿透率提高至90%;在還原氣氛下,薄膜的電阻降低,但穿透率卻略微下降。因此,本研究所製備之SnO2:(Sb, Cu)薄膜可藉由濺鍍參數或後續熱處理的控制,達到薄膜最佳光電特性。

    Transparent and conductive oxide (TCO) thin films, which have wide low resistance and high transmittance in the visible wavelength range, have been widely used as various applications. Besides, SnO2 (wide band-gap) has been known to be excellent material for these applications. SnO2 is a n-type semiconductors and has some oxygen vacancies. Other elements will be doped in order to improve electrical property. In this study, SnO2:(Sb, Cu) thin films will be deposited by RF magnetron sputtering using Sb2O3 and CuO co-doped SnO2 ceramic targets. The effects of the RF power, oxygen ratio, targets composition and heat treatment on the electrical and optical properties of SnO2:(Sb, Cu) thin films were investigated.
    The experimental results show the addition of Sb2O3 can improve the electrical properties of SnO2 bulks, but suppress bulk density. Therefore, we can obtain targets with highly dense and good electrical property by adding Sb2O3 and CuO. With increasing the contents of Sb¬2O3, the optical and electrical properties of the films degenerate and (2Sb2Cu) films have the best properties. Furthermore, RF power and oxygen ratio parameters have significant influence on the composition, electrical properties and optical properties. Because film crystallization increases, it is helpful to improve film properties. Electrical properties worsen with decreasing oxygen vacancies. On the RF power(120W) and oxygen ratio(0%) parameters, (2Sb2Cu) films have better resistivity 2.5×10-2Ω-cm.
    In order to further improve the optical and electrical properties of SnO2:(Sb, Cu) films, the as-deposited films were heat-treated at 250、500°C in O2(oxidation atmosphere) and N2(reduction atmosphere).Under oxidation atmosphere, the resistivity and transmittance of films raise. Under reduction atmosphere, the resistivity of films decrease to 9.1×10-3Ω-cm, but transmittance slightly decrease to 70~75%. Therefore, the purpose of this work is to obtain optical and electrical optimum of SnO2:(Sb, Cu) thin films by controlling sputtering parameters and heat treatment conditions.

    總目錄 中文摘要 I 英文摘要 III 誌謝 V 總目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 7 2-1 二氧化錫(Tin dioxide)的基本性質 7 2-2 二氧化錫之燒結特性 9 2-3 氧化銅液相的形成 10 2-4 濺鍍理論 13 2-5 鍍層微結構的Thorton模型 17 2-6 TCO的導電原理 19 2-7 TCO的光學原理 23 第三章 實驗步驟及方法 27 3-1 實驗流程 27 3-2 靶材之合成與製備 28 3-3 系統設計 31 3-4 原料選擇 33 3-4-1 濺鍍氣體 33 3-4-2 基板材料 33 3-5 鍍膜參數及步驟 34 3-5-1 鍍膜參數 34 3-5-2 鍍膜步驟 34 3-6 分析及測試 35 3-6-1 靶材密度量測 35 3-6-2 靶材電阻率量測 36 3-6-3 鍍膜速率量測 36 3-6-4 X-ray繞射分析 38 3-6-5 表面型態分析 38 3-6-6 薄膜電性分析 61 3-6-7 薄膜光學性質分析 40 3-6-8 成分及化學性質分析 41 第四章 結果與討論 42 4-1 SnO2:Sb2O3:CuO靶材合成 42 4-1-1 添加Sb2O3與CuO對靶材緻密化之影響 43 4-1-2 添加Sb2O3與CuO對導電性質之影響 49 4-2 改變Sb2O3添加量(靶材組成不同)對薄膜之影響 薄膜之性質研究 56 4-2-1 改變Sb2O3添加量對薄膜結構特性之影響 56 4-2-2 改變Sb2O3添加量對薄膜表面型態之影響 59 4-2-3 改變Sb2O3添加量對薄膜組成分析之影響 62 4-2-4 改變Sb2O3添加量對薄膜導電性質之影響 62 4-2-5 改變Sb2O3添加量對薄膜光學性質之影響 68 4-3 改變射頻功率和氧氣分率對薄膜之影響 71 4-3-1 改變射頻功率和氧氣分率對薄膜結構特性之影響 73 4-3-2 改變射頻功率和氧氣分率對薄膜成長速率之影響 75 4-3-3 改變射頻功率和氧氣分率對薄膜表面型態之影響 79 4-3-4 改變射頻功率和氧氣分率對薄膜導電性質之影響 82 4-3-5 改變射頻功率和氧氣分率對薄膜光學性質之影響 88 4-4 熱處理氣氛及溫度對薄膜之影響 92 4-4-1 熱處理氣氛及溫度對薄膜微結構和組成分析之影響 93 4-4-2 熱處理氣氛及溫度對薄膜表面型態之影響 99 4-4-3 熱處理氣氛及溫度對薄膜導電性質之影響 101 4-4-4 熱處理氣氛及溫度對薄膜光學性質之影響 104 第五章 結論 107 參考文獻 109 表目錄 表1-1 透明導電膜(TCO)應用範圍 2 表3-1 混合粉末的成分組成 30 表4-1 SnO2:Sb2O3:CuO 塊材橫截破斷面選區EDX分析各元素組成 47 表4-2 改變Sb2O3添加量(靶材組成不同)系列之實驗參數 57 表4-3 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率數值 64 表4-4 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜Sb3d3/2峰ESCA鍵結能值及[Sb3+]、[Sb5+]所佔比例 67 表4-5 改變射頻功率系列之實驗參數 72 表4-6 改變氧氣分率系列之實驗參數 72 表4-7 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率數值 85 表4-8 不同氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係圖 87 表4-9 改變熱處理氣氛及溫度系列之實驗參數 94 表4-10 不同熱處理氣氛及溫度熱處理之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係 103 圖目錄 圖2-1 二氧化錫金紅石結構 9 圖2-2 二氧化錫非緻密化機制 12 圖2-3 在不同氧分壓下Cu2O-CuO 系統的共晶相圖 14 圖2-4 離子與靶材表面之影響 16 圖2-5 薄膜之成核與形成 18 圖2-6 Thorton 的Structure-zone model 理論 20 圖2-7 TCO 的光穿透、反射與吸收光譜的代表圖 24 圖2-8 Burstein-Moss (BM) shift 的示意圖 26 圖3-1 實驗詳細流程圖 26 圖3-2 靶材合成流程圖 28 圖3-3 RF磁控濺鍍系統說明圖 32 圖3-4 四點直流方式測量示意圖 37 圖4-1 在1300°C燒結4小時之SnO2:Sb¬O3:CuO 試片未拋光XRD (a)1Sb2Cu (b)2Sb2Cu (c)3Sb2Cu (d)4Sb2Cu (e)5Sb2Cu 44 圖4-2 在1300°C燒結4小時之SnO2:Sb2O3:CuO 試片拋光後XRD (a)1Sb2Cu (b)2Sb2Cu (c)3Sb2Cu (d)4Sb2Cu (e)5Sb2Cu 45 圖4-3 SnO2:Sb2O3:CuO (1Sb2Cu)塊材橫截破斷面選區EDX分析 47 圖4-4 在1000~1300°C燒結4小時SnO2:Sb2O3:CuO 塊材相對密度 48 圖4-5 在1300°C燒結4小時之SnO2:Sb2O3:CuO 試片經拋光與熱侵蝕後SEM圖 (a)1Sb2Cu (b)2Sb2Cu (c)3Sb2Cu (d)4Sb2Cu (e)5Sb2Cu 50 圖4-6 不同Sb2O3添加量在1300°C燒結4小時之SnO2:Sb2O3:CuO試片電阻率 53 圖4-7 不同Sb2O3添加量之SnO2:Sb¬2O3:CuO 試片Sb3d3/2峰ESCA鍵結能圖譜 (a)2Sb2Cu (b)5Sb2Cu 54 圖4-8 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜 (a)JCPDS data #46-1088 (b)1Sb2Cu (c)2Sb2Cu (d)3Sb2Cu (e)4Sb2Cu (f)5Sb2Cu. 58 圖4-9 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜 (200)繞射峰 (a)JCPDS data #46-1088 (b)1Sb2Cu (c)2Sb2Cu (d)3Sb2Cu (e)4Sb2Cu (f)5Sb2Cu. 60 圖4-10 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜SEM表面型態 61 圖4-11 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜ESCA之原子比例 (a) O/Sn at.% (b) Sb/Sn at.% 和Cu/Sn at.% . 63 圖4-12 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係 64 圖4-13 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜Sb3d3/2峰ESCA鍵結能圖譜 (a)1Sb2Cu (b)2Sb2Cu (c)3Sb2Cu (d)4Sb2Cu (e)5Sb2Cu 66 圖4-14 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜穿透光譜圖 70 圖4-15 不同Sb2O3添加量之靶材所製備SnO2:(Sb, Cu)薄膜光能隙 70 圖4-16 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜XRD (a)JCPDS data #46-1088 (b)80W (c)100W (d)120W (e)140W 74 圖4-17 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜XRD (a)JCPDS data #46-1088 (b)O2 ratio=10% (c) O2 ratio=20% (d) O2 ratio=30% 76 圖4-18 不同射頻功率及氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜成長速率關係 77 圖4-19 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜SEM表面型態 (a)80W (b)100W (c)120W (d)140W 80 圖4-20 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜AFM圖 (a)80W (b)100W (c)120W (d)140W 81 圖4-21 T不同氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜SEM及AFM表面型態 (a)O2 ratio=10% (b) O2 ratio=20% (c) O2 ratio=30% 83 圖4-22 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係圖 85 圖4-23 不同氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係圖 87 圖4-24 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜穿透光譜圖 90 圖4-25 不同射頻功率參數條件下之SnO2:(Sb, Cu)薄膜光能隙 90 圖4-26 不同氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜穿透光譜圖 91 圖4-27 不同氧氣分率參數條件下之SnO2:(Sb, Cu)薄膜光能隙 91 圖4-28 不同氣氛及溫度退火熱處理之SnO2:(Sb, Cu)薄膜之XRD (a) JCPDS #46-1088 (b)初鍍膜 (c)在氧氣氣氛250°C下熱處理(d)在氧氣氣氛500°C下熱處理 (e)在還原氣氛250°C下熱處理 (f)在還原氣氛500°C下熱處理 95 圖4-29 不同氣氛及溫度退火熱處理之SnO2:(Sb, Cu)薄膜XRD (a)在氧氣氣氛下熱處理 (b)在還原氣氛下熱處理. 96 圖4-30 不同氣氛及溫度退火熱處理之SnO2:(Sb, Cu)薄膜O/Sn原子比例 98 圖4-31 不同氣氛及溫度退火熱處理之SnO2:(Sb, Cu)薄膜SEM (a)在250°C下氧氣氣氛熱處理 (b)在500°C下氧氣氣氛熱處理 (c)在250°C下還原氣氛熱處理 (d)在500°C下還原氣氛熱處理 100 圖4-32 不同氣氛及溫度熱處理之SnO2:(Sb, Cu)薄膜電阻率、載子濃度及載子遷移率關係圖 (a)O2氧化氣氛下不同溫度熱處理 (b)N2+H2還原氣氛下不同溫度熱處理 102 圖4-33 不同氣氛及溫度熱處理之SnO2:(Sb, Cu)薄膜穿透光譜圖 105 圖4-34 不同氣氛及溫度熱處理之SnO2:(Sb, Cu)薄膜光能隙 105

    1. 楊明輝, 透明導電膜材料與成膜技術的新發展, 工業材料, 第189
    期, p.161~174(2000).
    2. B.H. Lee, I.G. Kim, S. W. Cho, S.H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application” Thin Solid Films, 302, 25(1997).
    3. C.C. Wu, C.I. Wu, J.C. Starm, A.Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices” Appl. Phys. Lett., 70, 1348(1997).
    4. F. Li, H. Tang, J. Shinar, “Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic light-emitting diodes” Appl. Phys. Lett., 70, 2741(1997).
    5. S.A. Van Slyke, C.H. Chen, C.W. Tang, “Organic electroluminescent devices with improved stability” Appl. Phys. Lett., 69, 2160(1996).
    6. T. Ishida, H. Kobayashi, Y. Nakada, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements” J. Appl. Phys., 73, 4344(1993).
    7. M.D. Stoev, J. Touskova, J. Tousek, “X-ray photoelectron spectroscopy, scanning electron microscopy and optical transmittance studies of indium tin oxide and cadmium sulphide thin films for solar cells” Thin Solid Films, 299, 67(1997).
    8. M.A. Martinez, J. Herrero, M.T. Gutierrez, “Optimisation of indium tin oxide thin films for photovoltaic applications” Thin Solid Films, 269, 80(1995).
    9. R. Scheer, T.Walter, H.W. Schock, M.L. Fearheiley, H.L. Lewerenz, “CuInS2 based thin film solar cell with 10.2% efficiency” Appl. Phys. Lett., 63, 3294(1993)
    10. Y.J. Lin., C.J. Wu, “The properties of antimony-doped tin oxide thin films from the sol-gel process” Surface & Coatibg Technology, 88, 239(1996).
    11. J. Dutta.,J. Perrin,T. Emeraud,J. M. Laurent,and A. Smith, “Pyrosol deposition of fluorine-doped tin dioxide thin films” J. Mater. Sci., 30, 53(1995).
    12. P. Veluchamy, M.Tsuji, T. Nishio, et al., “A pyrosol process to deposit large-area SnO2:F thin films and its use as a transparent conducting substrate for Cd Te solar cells” Solar Energy Materials &Solar Cell, 67, 179(2001).
    13. B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo” J.Appl. Phy.,76 (6), 3797, (1994).
    14. 余樹楨, 晶體內部原子排列-晶體結構, in 晶體之結構與性質, 余樹楨著, 渤海堂, 第十二章, p.281-284(1987).
    15. J.A. Varela, L.A. Perazolli, J.A. Cerri, E.R. Leite, E. Longo, “Sintering of tin oxide and its applications in electronics and processing of high purity optical glasses” Ceramica, 47, 302(2001).
    16. E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, C.A. Paskocima, “Sintering of ultrafine undoped SnO2 powder” J. Eur. Ceram. Soc., 21, 669(2001).
    17. M.R. Cassia-Santos, V.C. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomes, E. Longo, E.R. Leite, J.A. Varela, “Recent research developments in SnO2-based varistors” Mater. Chem. Phys., 90, 1(2005).
    18. I.O. Mazali, W.C. Las, M. Cilense, “The effect of preparation method and Sb content on SnO2-CuO sintering” J. Mater. Sci., 38, 3325(2003).
    19. O. Scalat, S. Mihaiu, Gh. Aldica, M. Zaharescu, J. Groza, “Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering” J. Am. Ceram. Soc., 86[6] 893(2003).
    20. S. Mihaiu, O. Scalat, Gh. Aldica, M. Zaharescu, “SnO2 electro- ceramics with various additives” J. Eur. Ceram. Soc., 21, 1801(2001).
    21. M. Zaharescu, S. Mihaiu, S. Zuca, K. Matiasovsky, “Contribution to the study of SnO2-based ceramics Part. I High-temperature interactions of tin(IV) oxide with antimony(III) oxide and copper(II) oxide” J. Mater. Sci., 26, 1666(1991).
    22. E. Levin, C.R. Robbins, H.F. McMurdie, Phase Diagrams for Ceramists Vol.II, American Ceramic Society Inc., p.2069(1964).
    23. A.M.M. Gadalla, W.F. Ford, J. White, “Equilibrium Relationships in the System CuO-Cu2O-SiO2” Trans. Br. Ceram. Soc., 62, 57(1963).
    24. J. Lalande, R.O. Fichet, P. Boch, “Sintering behaviour of CuO-doped SnO2” J. Eur. Ceram. Soc., 20, 2415(2000).
    25. D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, p92-100(1991).
    26. Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York(1980).
    27. John A. Thornton, J. Vac. Sci. Technol., 11 (4), 666(1974).
    28. D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films” Appl. Phy. A, 62, 487(1996).
    29. N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, H. Hosono, “Phonon scattering in electron transport phenomena of ITO films” Vacuum, 59, 492(2000).
    30. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films” J.Vac.Sci.Technol. A, 19(4), 1636(2001).
    31. M.Chen et al., “X-ray photoelectron spectroscopy and auger electron
    spectroscopy studies of Al-doped ZnO films” Appl. Surf. Sci., 158,
    134(2000).
    32. D. Nisiro, G Fabbri, G.C. Celotti, A. Bellosi, “Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics” J. Mater. Sci., 38, 2727(2003).
    33. O. Scalat, M. Mihaiu, M. Zaharescu, “Subsolidus phase relations in the SnO2-CuSb2O6 binary system” J. Eur. Ceram. Soc., 22, 1839(2002).
    34. T. Kikuchi, M. Umehara, “Relation between antimony content and lattice parameters of Sb-Sn oxide” J. Mater. Sci. Lett., 4, 1051(1985).
    35. C. Terrier, J.P. Chatelon, R. Berjoan, J.A. Roger, “Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique” Thin Solid Films, 263, 37(1995).
    36. F.J. Berry, “Tin-antimony oxide oxidation catalysts” Hyperfine Interactions, 111, 35(1998).
    37. Y. Wang, Jin Ma, Feng Ji, Xuhu Yu, Honglei Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering” J.luminescence, 114, 71(2005).
    38. C. Terrier, J.P. Chatelon, J.A. Roger, “Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method” J.Sol-Gel and Tech., 10, 75(1997).
    39. D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, “XPS investigations of surface segregation of doping elements in SnO2” Applied Surface Sci., 179, 301(2001).
    40. T.Y. Lim, C.Y. Kim, B.S. Kim, “Effects of SiO2 Barrier and N2 Annealing on Sb-Doped SnO2 Transparent Conducting Film Prepared by Sol-Gel Dip Coating” J.Sol-Gel and Tech.,31, 263(2004).
    41. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, “Electrical and optical properties of undoped and antimony-doped tin oxide films” J.Appl.Phys., 51, 6243(1980).
    42. S. Jager, B. Szyszka, J. Szczyrbowski, G. Brauer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering” Surface and Coating Tech., 98, 1304(1998).
    43. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, “A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth” Thin Solid Films, 258, 159(1995).
    44. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, “A model for thin film texture evolution driven by surface energy effects” Phys. Status Solidi B,195, 179(1996).
    45. P.B. Barna, M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models” Thin Solid Films, 317, 27(1998).
    46. B. D. Cullity, “Elements of X-Ray Diffraction”, Addison Wesley, (1977).
    47. 張榮芳, “反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”, 國立成功大學材料科學及工程學系博士論文, p. 35, 中華民國九十年九月
    48. F. J. Berry and James C. Mcatter, “Electron paramagnetic resonance investigation of antimony doped tin(IV) oxide” Inorganica Chimica Acta, 50, 85(1981).
    49. B.L. Martinsa, Elson Longob, Juan Andresa, and C.A. Taftc, “Theoretical study of cluster models and molecular hydrogen interaction with SnO2 [110] surface” Journal of Molecular Structure (Theochem), 335, 167(1995).
    50. Sekhar C. Ray, Malay K. Karanjai, and Dhruba Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique” Surface and Coatings Technology, 102, 73(1998).
    51. J. C. Manifacier, and J. Gasiot, “Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors” Materials Chemistry and Physics, 59, 247(1999).
    52. B. Stjerna, E. Olsson, and C. G. Granqvist, “Characterization of RF-sputtered SnOx thin films by electron microscopy, Hall-effect measurement, and Mossbauer spectrometry” J. Appl. Phys., 68(12) , 6241(1990).
    53. S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib,and K.E. Creasy, “Tin oxide films made by physical vapor deposition –thermal oxidation and spray pyrolysis” Chem. Mater., 10, 2389(1998).

    下載圖示 校內:2012-07-24公開
    校外:2017-07-24公開
    QR CODE