| 研究生: |
溫騰億 Wen, Teng-Yi |
|---|---|
| 論文名稱: |
添加劑及熱處理氣氛對二氧化錫濺鍍薄膜光電特性之影響 Effects of Additives and Heat-treating Atmospheres on Electrical and Optical Properties of RF-Sputtered Tin Dioxide Films |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 二氧化錫 、濺鍍 |
| 外文關鍵詞: | SnO2, sputtering |
| 相關次數: | 點閱:49 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於透明導電氧化物薄膜具有低電阻率及可見光範圍高穿透率,應用範圍非常廣泛,其中,二氧化錫(SnO2)為一寬能階材料具優異光穿透特性。SnO2本質為n-type半導體,藉氧空缺存在提升材料導電性質,也可藉由摻雜其他元素來提升材料導電率。而本研究採用同時添加Sb2O3 與CuO 的SnO2靶材成分,並藉由射頻磁控濺鍍法濺鍍緻密化二氧化錫陶瓷靶材,沈積所需之薄膜,在本研究中,利用改變射頻磁控濺鍍參數(射頻功率及氧氣分率)、靶材組成不同(改變Sb2O3添加量改變)、後續不同氣氛熱處理對薄膜光電特性之影響。
實驗結果顯示,在同時添加Sb2O3與CuO的SnO2靶材成分中,添加Sb2O3對於SnO2導電性質提升有幫助,對於靶材緻密化卻有負面影響,因此同時添加Sb2O3與CuO可製備兼具高緻密性(相對密度最高達98.9%)與良好導電性之SnO2靶材,而對合成之SnO2:Sb2O3:CuO陶瓷靶材所沈積SnO2:(Sb, Cu)薄膜,隨著Sb2O3添加量增加,薄膜光電性質皆降低,以(2Sb2Cu)靶材成分所製備薄膜具有最佳性質。此外,隨著射頻功率及氧氣分率參數條件改變,由於薄膜結晶性增加,有助於導電性質與光學性質的提升,而氧空缺的減少,卻導致電阻上升,因此,射頻功率為120W時及氧氣分率0%的參數條件,(2Sb2Cu)可得最佳電阻率2.5×10-2Ω-cm。
為了進一步改善SnO2:(Sb, Cu)薄膜之光電性質,初鍍膜分別在O2(氧化氣氛)及95%N2+5%H2(還原氣氛)熱處理,可知SnO2:(Sb, Cu)薄膜隨著熱處理氣氛之不同,而有明顯的光電性質變化,在氧化氣氛下,薄膜明顯電阻上升至4.5×10-1Ω-cm,而可見光穿透率提高至90%;在還原氣氛下,薄膜的電阻降低,但穿透率卻略微下降。因此,本研究所製備之SnO2:(Sb, Cu)薄膜可藉由濺鍍參數或後續熱處理的控制,達到薄膜最佳光電特性。
Transparent and conductive oxide (TCO) thin films, which have wide low resistance and high transmittance in the visible wavelength range, have been widely used as various applications. Besides, SnO2 (wide band-gap) has been known to be excellent material for these applications. SnO2 is a n-type semiconductors and has some oxygen vacancies. Other elements will be doped in order to improve electrical property. In this study, SnO2:(Sb, Cu) thin films will be deposited by RF magnetron sputtering using Sb2O3 and CuO co-doped SnO2 ceramic targets. The effects of the RF power, oxygen ratio, targets composition and heat treatment on the electrical and optical properties of SnO2:(Sb, Cu) thin films were investigated.
The experimental results show the addition of Sb2O3 can improve the electrical properties of SnO2 bulks, but suppress bulk density. Therefore, we can obtain targets with highly dense and good electrical property by adding Sb2O3 and CuO. With increasing the contents of Sb¬2O3, the optical and electrical properties of the films degenerate and (2Sb2Cu) films have the best properties. Furthermore, RF power and oxygen ratio parameters have significant influence on the composition, electrical properties and optical properties. Because film crystallization increases, it is helpful to improve film properties. Electrical properties worsen with decreasing oxygen vacancies. On the RF power(120W) and oxygen ratio(0%) parameters, (2Sb2Cu) films have better resistivity 2.5×10-2Ω-cm.
In order to further improve the optical and electrical properties of SnO2:(Sb, Cu) films, the as-deposited films were heat-treated at 250、500°C in O2(oxidation atmosphere) and N2(reduction atmosphere).Under oxidation atmosphere, the resistivity and transmittance of films raise. Under reduction atmosphere, the resistivity of films decrease to 9.1×10-3Ω-cm, but transmittance slightly decrease to 70~75%. Therefore, the purpose of this work is to obtain optical and electrical optimum of SnO2:(Sb, Cu) thin films by controlling sputtering parameters and heat treatment conditions.
1. 楊明輝, 透明導電膜材料與成膜技術的新發展, 工業材料, 第189
期, p.161~174(2000).
2. B.H. Lee, I.G. Kim, S. W. Cho, S.H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application” Thin Solid Films, 302, 25(1997).
3. C.C. Wu, C.I. Wu, J.C. Starm, A.Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices” Appl. Phys. Lett., 70, 1348(1997).
4. F. Li, H. Tang, J. Shinar, “Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic light-emitting diodes” Appl. Phys. Lett., 70, 2741(1997).
5. S.A. Van Slyke, C.H. Chen, C.W. Tang, “Organic electroluminescent devices with improved stability” Appl. Phys. Lett., 69, 2160(1996).
6. T. Ishida, H. Kobayashi, Y. Nakada, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements” J. Appl. Phys., 73, 4344(1993).
7. M.D. Stoev, J. Touskova, J. Tousek, “X-ray photoelectron spectroscopy, scanning electron microscopy and optical transmittance studies of indium tin oxide and cadmium sulphide thin films for solar cells” Thin Solid Films, 299, 67(1997).
8. M.A. Martinez, J. Herrero, M.T. Gutierrez, “Optimisation of indium tin oxide thin films for photovoltaic applications” Thin Solid Films, 269, 80(1995).
9. R. Scheer, T.Walter, H.W. Schock, M.L. Fearheiley, H.L. Lewerenz, “CuInS2 based thin film solar cell with 10.2% efficiency” Appl. Phys. Lett., 63, 3294(1993)
10. Y.J. Lin., C.J. Wu, “The properties of antimony-doped tin oxide thin films from the sol-gel process” Surface & Coatibg Technology, 88, 239(1996).
11. J. Dutta.,J. Perrin,T. Emeraud,J. M. Laurent,and A. Smith, “Pyrosol deposition of fluorine-doped tin dioxide thin films” J. Mater. Sci., 30, 53(1995).
12. P. Veluchamy, M.Tsuji, T. Nishio, et al., “A pyrosol process to deposit large-area SnO2:F thin films and its use as a transparent conducting substrate for Cd Te solar cells” Solar Energy Materials &Solar Cell, 67, 179(2001).
13. B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo” J.Appl. Phy.,76 (6), 3797, (1994).
14. 余樹楨, 晶體內部原子排列-晶體結構, in 晶體之結構與性質, 余樹楨著, 渤海堂, 第十二章, p.281-284(1987).
15. J.A. Varela, L.A. Perazolli, J.A. Cerri, E.R. Leite, E. Longo, “Sintering of tin oxide and its applications in electronics and processing of high purity optical glasses” Ceramica, 47, 302(2001).
16. E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, C.A. Paskocima, “Sintering of ultrafine undoped SnO2 powder” J. Eur. Ceram. Soc., 21, 669(2001).
17. M.R. Cassia-Santos, V.C. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomes, E. Longo, E.R. Leite, J.A. Varela, “Recent research developments in SnO2-based varistors” Mater. Chem. Phys., 90, 1(2005).
18. I.O. Mazali, W.C. Las, M. Cilense, “The effect of preparation method and Sb content on SnO2-CuO sintering” J. Mater. Sci., 38, 3325(2003).
19. O. Scalat, S. Mihaiu, Gh. Aldica, M. Zaharescu, J. Groza, “Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering” J. Am. Ceram. Soc., 86[6] 893(2003).
20. S. Mihaiu, O. Scalat, Gh. Aldica, M. Zaharescu, “SnO2 electro- ceramics with various additives” J. Eur. Ceram. Soc., 21, 1801(2001).
21. M. Zaharescu, S. Mihaiu, S. Zuca, K. Matiasovsky, “Contribution to the study of SnO2-based ceramics Part. I High-temperature interactions of tin(IV) oxide with antimony(III) oxide and copper(II) oxide” J. Mater. Sci., 26, 1666(1991).
22. E. Levin, C.R. Robbins, H.F. McMurdie, Phase Diagrams for Ceramists Vol.II, American Ceramic Society Inc., p.2069(1964).
23. A.M.M. Gadalla, W.F. Ford, J. White, “Equilibrium Relationships in the System CuO-Cu2O-SiO2” Trans. Br. Ceram. Soc., 62, 57(1963).
24. J. Lalande, R.O. Fichet, P. Boch, “Sintering behaviour of CuO-doped SnO2” J. Eur. Ceram. Soc., 20, 2415(2000).
25. D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, p92-100(1991).
26. Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York(1980).
27. John A. Thornton, J. Vac. Sci. Technol., 11 (4), 666(1974).
28. D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films” Appl. Phy. A, 62, 487(1996).
29. N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, H. Hosono, “Phonon scattering in electron transport phenomena of ITO films” Vacuum, 59, 492(2000).
30. N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, H. Nanto, “Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films” J.Vac.Sci.Technol. A, 19(4), 1636(2001).
31. M.Chen et al., “X-ray photoelectron spectroscopy and auger electron
spectroscopy studies of Al-doped ZnO films” Appl. Surf. Sci., 158,
134(2000).
32. D. Nisiro, G Fabbri, G.C. Celotti, A. Bellosi, “Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics” J. Mater. Sci., 38, 2727(2003).
33. O. Scalat, M. Mihaiu, M. Zaharescu, “Subsolidus phase relations in the SnO2-CuSb2O6 binary system” J. Eur. Ceram. Soc., 22, 1839(2002).
34. T. Kikuchi, M. Umehara, “Relation between antimony content and lattice parameters of Sb-Sn oxide” J. Mater. Sci. Lett., 4, 1051(1985).
35. C. Terrier, J.P. Chatelon, R. Berjoan, J.A. Roger, “Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique” Thin Solid Films, 263, 37(1995).
36. F.J. Berry, “Tin-antimony oxide oxidation catalysts” Hyperfine Interactions, 111, 35(1998).
37. Y. Wang, Jin Ma, Feng Ji, Xuhu Yu, Honglei Ma, “Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering” J.luminescence, 114, 71(2005).
38. C. Terrier, J.P. Chatelon, J.A. Roger, “Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method” J.Sol-Gel and Tech., 10, 75(1997).
39. D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, “XPS investigations of surface segregation of doping elements in SnO2” Applied Surface Sci., 179, 301(2001).
40. T.Y. Lim, C.Y. Kim, B.S. Kim, “Effects of SiO2 Barrier and N2 Annealing on Sb-Doped SnO2 Transparent Conducting Film Prepared by Sol-Gel Dip Coating” J.Sol-Gel and Tech.,31, 263(2004).
41. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, “Electrical and optical properties of undoped and antimony-doped tin oxide films” J.Appl.Phys., 51, 6243(1980).
42. S. Jager, B. Szyszka, J. Szczyrbowski, G. Brauer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering” Surface and Coating Tech., 98, 1304(1998).
43. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, “A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth” Thin Solid Films, 258, 159(1995).
44. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, “A model for thin film texture evolution driven by surface energy effects” Phys. Status Solidi B,195, 179(1996).
45. P.B. Barna, M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models” Thin Solid Films, 317, 27(1998).
46. B. D. Cullity, “Elements of X-Ray Diffraction”, Addison Wesley, (1977).
47. 張榮芳, “反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”, 國立成功大學材料科學及工程學系博士論文, p. 35, 中華民國九十年九月
48. F. J. Berry and James C. Mcatter, “Electron paramagnetic resonance investigation of antimony doped tin(IV) oxide” Inorganica Chimica Acta, 50, 85(1981).
49. B.L. Martinsa, Elson Longob, Juan Andresa, and C.A. Taftc, “Theoretical study of cluster models and molecular hydrogen interaction with SnO2 [110] surface” Journal of Molecular Structure (Theochem), 335, 167(1995).
50. Sekhar C. Ray, Malay K. Karanjai, and Dhruba Dasgupta, “Tin dioxide based transparent semiconducting films deposited by the dip-coating technique” Surface and Coatings Technology, 102, 73(1998).
51. J. C. Manifacier, and J. Gasiot, “Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors” Materials Chemistry and Physics, 59, 247(1999).
52. B. Stjerna, E. Olsson, and C. G. Granqvist, “Characterization of RF-sputtered SnOx thin films by electron microscopy, Hall-effect measurement, and Mossbauer spectrometry” J. Appl. Phys., 68(12) , 6241(1990).
53. S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib,and K.E. Creasy, “Tin oxide films made by physical vapor deposition –thermal oxidation and spray pyrolysis” Chem. Mater., 10, 2389(1998).